Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation

被引:39
作者
Chen, Z
Gumel, AB
Mickens, RE
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Clark Atlanta Univ, Dept Phys, Atlanta, GA 30314 USA
关键词
nonstandard finite-difference schemes; truncation errors; convergence; Nagumo model; positivity;
D O I
10.1002/num.10048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A competitive nonstandard semi-explicit finite-difference method is constructed and used to obtain numerical solutions of the diffusion-free generalized Nagumo equation. Qualitative stability analysis and numerical simulations show that this scheme is more robust in comparison to some standard explicit methods such as forward Euler and the fourth-order Runge-Kutta method (RK4). The nonstandard scheme is extended to construct a semi-explicit and an implicit scheme to solve the full Nagumo reaction-diffusion equation. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:363 / 379
页数:17
相关论文
共 12 条
[1]  
Alligood K. T., 1997, CHAOS INTRO DYNAMICA
[2]  
[Anonymous], 1986, REACTION DIFFUSION E
[3]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[4]  
GUMEL AB, IN PRESS INT J NONLI
[5]  
Lambert J.D., 1991, Numerical methods for ordinary differential equations
[6]  
Mickens R.E., 1994, Nonstandard Finite Difference Models of Differential Equations, DOI 10.1142/2081
[7]  
Mickens RE, 1999, NUMER METH PART D E, V15, P201, DOI 10.1002/(SICI)1098-2426(199903)15:2<201::AID-NUM5>3.3.CO
[8]  
2-8
[9]  
MICKENS RE, 1994, APPL NONSTANDARD FIN
[10]  
MITCHELL AR, 1985, NUMER METH PART D E, V1, P13