A new lower bound for the bipartite crossing number with applications

被引:7
作者
Shahrokhi, F
Sykora, O [1 ]
Székely, LA
Vrt'o, I
机构
[1] Loughborough Univ Technol, Dept Comp Sci, Loughborough LE11 3TU, Leics, England
[2] Univ N Texas, Dept Comp Sci, Denton, TX 76203 USA
[3] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[4] Slovak Acad Sci, Math Inst, Dept Informat, Bratislava 84000, Slovakia
基金
美国国家科学基金会;
关键词
bipartite crossing number; lower bounds; Menger's theorem; isoperimetric inequalities; Laplacian eigenvalues; mesh; hypercube;
D O I
10.1016/S0304-3975(99)00285-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G be a connected bipartite graph. We give a short proof, using a Variation of Menger's Theorem, for a new lower bound which relates the bipartite crossing number of G, denoted by bcr(G), to the edge connectivity properties of G. The general lower bound implies a weaker version of a very recent result, establishing a bisection-based lower bound on bcr(G) which has algorithmic consequences. Moreover, we show further applications of our general method to estimate bcr(G) for "well structured" families of graphs, for which tight isoperimetric inequalities are available. For hypercubes and two-dimensional meshes, the upper bounds (asymptotically) are within multiplicative factors of 4 and 2, from the lower bounds, respectively. The general lower bound also implies a lower bound involving eigenvalues of G. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:281 / 294
页数:14
相关论文
共 50 条
[21]   Equivalence of Two Lower Bound Methods [J].
M.G. Marmorino .
Journal of Mathematical Chemistry, 2002, 31 :197-203
[22]   A Lower Bound for Essential Covers of the Cube [J].
Yehuda, Gal ;
Yehudayoff, Amir .
COMBINATORICA, 2024, 44 (04) :801-815
[23]   A Tight Lower Bound for Streett Complementation [J].
Cai, Yang ;
Zhang, Ting .
IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2011), 2011, 13 :339-350
[24]   Lower bound for scalable Byzantine Agreement [J].
Holtby, Dan ;
Kapron, Bruce M. ;
King, Valerie .
DISTRIBUTED COMPUTING, 2008, 21 (04) :239-248
[25]   A LOWER BOUND FOR PARALLEL STRING MATCHING [J].
BRESLAUER, D ;
GALIL, Z .
SIAM JOURNAL ON COMPUTING, 1992, 21 (05) :856-862
[26]   Lower bound for multimedia multicast routing [J].
Leung, YW ;
Yang, BT .
IEE PROCEEDINGS-COMMUNICATIONS, 1998, 145 (02) :87-90
[27]   Equivalence of two lower bound methods [J].
Marmorino, MG .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 31 (02) :197-203
[28]   Disproof of a conjecture by Erdos and Guy on the crossing number of hypercubes [J].
Yang, Yuansheng ;
Wang, Guoqing ;
Wang, Haoli ;
Zhou, Yan .
JOURNAL OF GRAPH THEORY, 2022, 100 (03) :389-434
[29]   Lower bound for scalable Byzantine Agreement [J].
Dan Holtby ;
Bruce M. Kapron ;
Valerie King .
Distributed Computing, 2008, 21 :239-248
[30]   A Lower Bound Technique for Communication in BSP [J].
Bilardi, Gianfranco ;
Scquizzato, Michele ;
Silvestri, Francesco .
ACM TRANSACTIONS ON PARALLEL COMPUTING, 2018, 4 (03)