Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

被引:75
作者
Abdi, M. [1 ,2 ]
Degenfeld-Schonburg, P. [1 ]
Sameti, M. [3 ]
Navarrete-Benlloch, C. [4 ,5 ]
Hartmann, M. J. [3 ]
机构
[1] Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany
[2] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[3] Heriot Watt Univ, Inst Photon & Quantum Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[4] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[5] Univ Erlangen Nurnberg, Inst Theoret Phys, Staudtstr 7, D-91058 Erlangen, Germany
关键词
GRAPHENE; SUPERCONDUCTIVITY; DECOHERENCE; GRAVITY; QUBITS;
D O I
10.1103/PhysRevLett.116.233604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.
引用
收藏
页数:6
相关论文
共 56 条
[1]   Entanglement Swapping with Local Certification: Application to Remote Micromechanical Resonators [J].
Abdi, M. ;
Pirandola, S. ;
Tombesi, P. ;
Vitali, D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (14)
[2]   Quantum State Engineering with Circuit Electromechanical Three-Body Interactions [J].
Abdi, Mehdi ;
Pernpeintner, Matthias ;
Gross, Rudolf ;
Huebl, Hans ;
Hartmann, Michael J. .
PHYSICAL REVIEW LETTERS, 2015, 114 (17)
[3]  
[Anonymous], 2009, Classical Electrodynamics
[4]  
Arndt M, 2014, NAT PHYS, V10, P271, DOI [10.1038/nphys2863, 10.1038/NPHYS2863]
[5]   Heralded entangled coherent states between spatially separated massive resonators [J].
Asadian, Ali ;
Abdi, Mehdi .
PHYSICAL REVIEW A, 2016, 93 (05)
[6]   Proposal for a Noninterferometric Test of Collapse Models in Optomechanical Systems [J].
Bahrami, M. ;
Paternostro, M. ;
Bassi, A. ;
Ulbricht, H. .
PHYSICAL REVIEW LETTERS, 2014, 112 (21)
[7]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[8]   High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators [J].
Barton, Robert A. ;
Ilic, B. ;
van der Zande, Arend M. ;
Whitney, William S. ;
McEuen, Paul L. ;
Parpia, Jeevak M. ;
Craighead, Harold G. .
NANO LETTERS, 2011, 11 (03) :1232-1236
[9]   Dynamical reduction models [J].
Bassi, A ;
Ghirardi, GC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 379 (5-6) :257-426
[10]   Dissipation and ultrastrong coupling in circuit QED [J].
Beaudoin, Felix ;
Gambetta, Jay M. ;
Blais, A. .
PHYSICAL REVIEW A, 2011, 84 (04)