INDEX THEORY FOR ACTIONS OF COMPACT LIE GROUPS ON C*-ALGEBRAS

被引:0
作者
Wahl, Charlotte [1 ]
机构
[1] Leibniz Forsch Stelle Gottinger Akad Wissensch, D-30169 Hannover, Germany
关键词
C*-dynamical system; index theory; principal; saturated; KK-theory; spectral triple; NONCOMMUTATIVE GEOMETRY; K-THEORY; QUANTUM; FORMULA; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the index theory for actions of compact Lie groups on C*-algebras with an emphasis on principal actions. Given an invariant semifinite faithful trace on the C*-algebra we get semifinite spectral triples. For circle actions we consider the relation to the dual Pimsner-Voiculescu sequence. On the way we show that the notions "saturated" and "principal" are equivalent for actions by compact Lie groups.
引用
收藏
页码:217 / 242
页数:26
相关论文
共 29 条
[1]  
[Anonymous], 1986, MATH SCI RES I PUBL
[2]  
[Anonymous], DOC MATH
[3]  
[Anonymous], 1979, C*-algebras and Their Automorphism Groups
[4]  
[Anonymous], 1998, Nieuw Arch. Wisk
[5]  
Baum P.F., ARXIVMATHDG0701033
[6]   Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras [J].
Benameur, MT ;
Fack, T .
ADVANCES IN MATHEMATICS, 2006, 199 (01) :29-87
[7]   Unbounded Fredholm modules and spectral flow [J].
Carey, A ;
Phillips, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (04) :673-718
[8]   The local index formula in sernifinite Von Neumann algebras I: Spectral flow [J].
Carey, AL ;
Phillips, J ;
Rennie, A ;
Sukochev, FA .
ADVANCES IN MATHEMATICS, 2006, 202 (02) :451-516
[9]   The local index formula in semifinite von Neumann algebras II: The even case [J].
Carey, Alan L. ;
Phillips, John ;
Rennie, Adam ;
Sukochev, Fyodor A. .
ADVANCES IN MATHEMATICS, 2006, 202 (02) :517-554
[10]  
CONNES A, 1980, CR ACAD SCI A MATH, V290, P599