A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks

被引:52
|
作者
Lancashire, L. J. [1 ,2 ]
Powe, D. G. [3 ,4 ]
Reis-Filho, J. S. [5 ]
Rakha, E. [3 ,4 ]
Lemetre, C. [1 ]
Weigelt, B. [7 ]
Abdel-Fatah, T. M. [3 ,4 ]
Green, A. R. [3 ,4 ]
Mukta, R. [3 ,4 ]
Blamey, R. [6 ]
Paish, E. C. [3 ,4 ]
Rees, R. C. [1 ]
Ellis, I. O. [3 ,4 ]
Ball, G. R. [1 ]
机构
[1] Nottingham Trent Univ, John Van Geest Canc Res Ctr, Nottingham NG11 8NS, England
[2] Univ Manchester, Paterson Inst Canc Res, Manchester M20 4BX, Lancs, England
[3] Nottingham Univ Hosp Trust, Dept Histopathol, Nottingham NG7 2UH, England
[4] Univ Nottingham, Nottingham NG7 2UH, England
[5] Inst Canc Res, Chester Beatty Labs, Breakthrough Breast Canc Res Ctr, London SW3 6JB, England
[6] City Hosp Nottingham, Dept Surg, Breast Inst, Nottingham NG5 1PB, England
[7] London Res Inst, Signal Transduct Lab, Lincolns Inn Fields Labs, London WC2A 3PX, England
关键词
Breast cancer; Prognosis; Bioinformatics; Survival; Hypoxia; Biomarkers; CARBONIC-ANHYDRASE-IX; CROSS-VALIDATION; MASS-SPECTROMETRY; PREDICT SURVIVAL; FIBROTIC FOCUS; CA-IX; HYPOXIA; CLASSIFICATION; CARCINOMAS; PROGNOSIS;
D O I
10.1007/s10549-009-0378-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Gene expression microarrays allow for the high throughput analysis of huge numbers of gene transcripts and this technology has been widely applied to the molecular and biological classification of cancer patients and in predicting clinical outcome. A potential handicap of such data intensive molecular technologies is the translation to clinical application in routine practice. In using an artificial neural network bioinformatic approach, we have reduced a 70 gene signature to just 9 genes capable of accurately predicting distant metastases in the original dataset. Upon validation in a follow-up cohort, this signature was an independent predictor of metastases free and overall survival in the presence of the 70 gene signature and other factors. Interestingly, the ANN signature and CA9 expression also split the groups defined by the 70 gene signature into prognostically distinct groups. Subsequently, the presence of protein for the principal prognosticator gene was categorically assessed in breast cancer tissue of an experimental and independent validation patient cohort, using immunohistochemistry. Importantly our principal prognosticator, CA9, showed that it is capable of selecting an aggressive subgroup of patients who are known to have poor prognosis.
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [1] A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks
    L. J. Lancashire
    D. G. Powe
    J. S. Reis-Filho
    E. Rakha
    C. Lemetre
    B. Weigelt
    T. M. Abdel-Fatah
    A. R. Green
    R. Mukta
    R. Blamey
    E. C. Paish
    R. C. Rees
    I. O. Ellis
    G. R. Ball
    Breast Cancer Research and Treatment, 2010, 120 : 83 - 93
  • [2] The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome
    Habermann, Jens K.
    Doering, Jana
    Hautaniemi, Sampsa
    Roblick, Uwe J.
    Buendgen, Nana K.
    Nicorici, Daniel
    Kronenwett, Ulrike
    Rathnagiriswaran, Shruti
    Mettu, Rama K. R.
    Ma, Yan
    Krueger, Stefan
    Bruch, Hans-Peter
    Auer, Gert
    Guo, Nancy L.
    Ried, Thomas
    INTERNATIONAL JOURNAL OF CANCER, 2009, 124 (07) : 1552 - 1564
  • [3] A Radiation-Derived Gene Expression Signature Predicts Clinical Outcome for Breast Cancer Patients
    Piening, Brian D.
    Wang, Pei
    Subramanian, Aravind
    Paulovich, Amanda G.
    RADIATION RESEARCH, 2009, 171 (02) : 141 - 154
  • [4] Prediction of Breast Cancer Diagnosis by Blood Biomarkers Using Artificial Neural Networks
    Benitez-Mata, Balam
    Castro, Carlos
    Castaneda, Ruben
    Vargas, Eunice
    Flores, Dora-Luz
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 47 - 55
  • [5] Constructive Neural Networks to Predict Breast Cancer Outcome by Using Gene Expression Profiles
    Urda, Daniel
    Luis Subirats, Jose
    Franco, Leo
    Manuel Jerez, Jose
    TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT I, PROCEEDINGS, 2010, 6096 : 317 - 326
  • [6] Breast cancer image classification using artificial neural networks
    Kaymak, Sertan
    Helwan, Abdulkader
    Uzun, Dilber
    9TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTION, ICSCCW 2017, 2017, 120 : 126 - 131
  • [7] Gene expression profile predicts outcome after anthracycline-based adjuvant chemotherapy in early breast cancer
    Bertucci, Francois
    Borie, Nathalie
    Roche, Henri
    Bachelot, Thomas
    Le Doussal, Jean-Marc
    Macgrogan, Gaetan
    Debono, Stephane
    Martinec, Agnes
    Treilleux, Isabelle
    Finetti, Pascal
    Esterni, Benjamin
    Extra, Jean-Marc
    Geneve, Jean
    Hermitte, Fabienne
    Chabannon, Christian
    Jacquemier, Jocelyne
    Martin, Anne-Laure
    Longy, Michel
    Maraninchi, Dominique
    Fert, Vincent
    Birnbaum, Daniel
    Viens, Patrice
    BREAST CANCER RESEARCH AND TREATMENT, 2011, 127 (02) : 363 - 373
  • [8] PRAME expression and clinical outcome of breast cancer
    M T Epping
    A A M Hart
    A M Glas
    O Krijgsman
    R Bernards
    British Journal of Cancer, 2008, 99 : 398 - 403
  • [9] PRAME expression and clinical outcome of breast cancer
    Epping, M. T.
    Hart, A. A. M.
    Glas, A. M.
    Krijgsman, O.
    Bernards, R.
    BRITISH JOURNAL OF CANCER, 2008, 99 (03) : 398 - 403
  • [10] Gene expression profiling and prediction of clinical outcome in ovarian cancer
    Sabatier, Renaud
    Finetti, Pascal
    Cervera, Nathalie
    Birnbaum, Daniel
    Bertucci, Francois
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2009, 72 (02) : 98 - 109