QUASI-CONVEX FREE POLYNOMIALS

被引:6
作者
Balasubramanian, S. [1 ]
McCullough, S. [2 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Dept Math & Stat, Kolkata 741246, W Bengal, India
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Free polynomials; quasi-convex; free real algebraic geometry; SUMS;
D O I
10.1090/S0002-9939-2014-11984-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R < x > denote the ring of polynomials in g freely noncommuting variables x = (x(1),..., x(g)). There is a natural involution * on R < x > determined by x(j)* = x(j) and (pq)* = q*p*, and a free polynomial p is an element of R < x > is symmetric if it is invariant under this involution. If X = (X-1,..., X-g) is a g tuple of symmetric n x n matrices, then the evaluation p(X) is naturally defined and further p*(X) = p(X)*. In particular, if p is symmetric, then p(X)* = p(X). The main result of this article says if p is symmetric, p(0) = 0 and for each n and each symmetric positive definite nxn matrix A the set {X : A-p(X) > 0} is convex, then p has degree at most two and is itself convex, or -p is a hermitian sum of squares.
引用
收藏
页码:2581 / 2591
页数:11
相关论文
共 22 条
[1]   Structured noncommutative multidimensional linear systems [J].
Ball, JA ;
Groenewald, G ;
Malakorn, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (04) :1474-1528
[2]   Noncommutative Positivstellensatze for pairs representation-vector [J].
Cimpric, Jakob .
POSITIVITY, 2011, 15 (03) :481-495
[3]  
de Oliveira MC, 2009, IMA VOL MATH APPL, V149, P17
[4]   The Hessian of a noncommutative polynomial has numerous negative eigenvalues [J].
Dym, Harry ;
Helton, J. William ;
McCullough, Scott .
JOURNAL D ANALYSE MATHEMATIQUE, 2007, 102 (1) :29-76
[5]   Irreducible noncommutative defining polynomials for convex sets have degree four or less [J].
Dym, Harry ;
Helton, William ;
McCullough, Scott .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1189-1231
[6]   NON-COMMUTATIVE VARIETIES WITH CURVATURE HAVING BOUNDED SIGNATURE [J].
Dym, Harry ;
Helton, J. William ;
McCullough, Scott .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) :427-464
[7]   Matrix convexity: Operator analogues of the bipolar and Hahn-Banach theorems [J].
Effros, EG ;
Winkler, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (01) :117-152
[8]   Non-commutative Partial Matrix Convexity [J].
Hay, Damon M. ;
Helton, J. William ;
Lim, Adrian ;
McCullough, Scott .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2815-2842
[9]   Strong majorization in a free *-algebra [J].
Helton, J. William ;
McCullough, Scott ;
Putinar, Mihai .
MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (03) :579-596
[10]   Every convex free basic semi-algebraic set has an LMI representation [J].
Helton, J. William ;
McCullough, Scott .
ANNALS OF MATHEMATICS, 2012, 176 (02) :979-1013