First-principles calculations of wurtzite ZnS1-xSex solid solutions for photocatalysis

被引:17
作者
Hussain, Sajjad [1 ,2 ]
Guo, Lingju [1 ]
Louis, Hitler [1 ,2 ]
Zhu, Shuang [1 ,2 ]
He, Tao [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnS1-xSex; Solid solution; Electronic property; Extinction coefficient; Effective mass; Band edge; BLUE LASER-DIODE; OPTICAL-PROPERTIES; ELECTRONIC-STRUCTURE; ZNS; APPROXIMATION; ALLOYS; ENERGY;
D O I
10.1016/j.mtcomm.2019.100672
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the structural, electronic and optical properties of ZnS1-xSex solid solutions in wurtzite phase are calculated by using full potential linearized augmented plane wave method. The GGA, HSE06 and mBJ approximations are used to calculate the bandgap values. The calculated mBJ bandgap values are close to the experimental results, which are 3.61, 3.49, 2.84, 2.72 and 2.60 eV for the compounds ZnS, ZnS0.75Se0.25, ZnS0.5Se0.5, ZnS0.25Se0.75 and ZnSe, respectively. The Zn 4 s, Zn 3p, Zn 3d, S 3p and Se 4p states show prominent contribution to the density of states of ZnS1-xSex solid solutions. The materials show maximum photoresponse in the ultraviolet energy region; while the edges of optical spectra shift to the low energy range with increasing the concentration of Se in the ZnS1-xSex solid solutions. Calculated effective mass is less than 1.5m(0) for all the solid solutions with different Se concentrations, indicating that the ZnS1-xSex solid solutions exhibit high charge mobility. Furthermore, conduction band minimum (CBM) of the ZnS1-xSex lies at a more negative value than the CO2 reduction potential and valence band maximum (VBM) is more positive than the water oxidation potential. All these suggest that the ZnS1-xSex solid solutions are promising for photocatalysis as the catalysts.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Predicted Lead-Free Perovskites for Solar Cells [J].
Ali, Roshan ;
Hou, Guo-Pao ;
Zhu, Zhen-Gang ;
Yan, Qing-Bo ;
Zheng, Qing-Rong ;
Su, Gang .
CHEMISTRY OF MATERIALS, 2018, 30 (03) :718-728
[2]   First-principle calculations of the structural, electronic, thermodynamic and thermal properties of ZnS x Se1-x ternary alloys [J].
Bendaif, S. ;
Boumaza, A. ;
Nemiri, O. ;
Boubendira, K. ;
Meradji, H. ;
Ghemid, S. ;
Hassan, F. El Haj .
BULLETIN OF MATERIALS SCIENCE, 2015, 38 (02) :365-372
[3]  
Blaha P., 2019, AUGMENTED PLANE WAVE
[4]   ZnS nano-architectures: photocatalysis, deactivation and regeneration [J].
Chen, Dagui ;
Huang, Feng ;
Ren, Guoqiang ;
Li, Dongsong ;
Zheng, Meng ;
Wang, Yongjing ;
Lin, Zhang .
NANOSCALE, 2010, 2 (10) :2062-2064
[5]   HIGHER EXCITED ELECTRONIC STATES IN CLUSTERS OF ZNSE, CDSE, AND ZNS - SPIN-ORBIT, VIBRONIC, AND RELAXATION PHENOMENA [J].
CHESTNOY, N ;
HULL, R ;
BRUS, LE .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (04) :2237-2242
[6]   Comparative density functional theory study on the electronic and optical properties of BiMO4 (M = V, Nb, Ta) [J].
Ding, Kaining ;
Chen, Bin ;
Li, Yulu ;
Zhang, Yongfan ;
Chen, Zhongfang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (22) :8294-8303
[7]   First principles study of defect formation in thermoelectric zinc antimonide, β-Zn4Sb3 [J].
Faghaninia, Alireza ;
Lo, Cynthia S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (12)
[8]   Electronic and optical properties of ZnS x Se1-x alloys [J].
Feng, Zhenbao ;
Hu, Haiquan ;
Cui, Shouxin .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2009, 7 (02) :340-344
[9]   Some physical investigations on ZnS1-xSex films obtained by selenization of ZnS sprayed films using the Boubaker polynomials expansion scheme [J].
Fridjine, S. ;
Touihri, S. ;
Boubaker, K. ;
Amlouk, M. .
JOURNAL OF CRYSTAL GROWTH, 2010, 312 (02) :202-208
[10]   Shape-Controlled Metal-Free Catalysts: Facet-Sensitive Catalytic Activity Induced by the Arrangement Pattern of Noncovalent Supramolecular Chains [J].
Geng, Guangwei ;
Chen, Penglei ;
Guan, Bo ;
Jiang, Lang ;
Xu, Zhongfei ;
Di, Dawei ;
Tu, Zeyi ;
Hao, Weichang ;
Yi, Yuanping ;
Chen, Chuncheng ;
Liu, Minghua ;
Hu, Wenping .
ACS NANO, 2017, 11 (05) :4866-4876