Suppression of Feedback Loops Mediated by PI3K/mTOR Induces Multiple Overactivation of Compensatory Pathways: An Unintended Consequence Leading to Drug Resistance

被引:238
作者
Rozengurt, Enrique [1 ,2 ,3 ,4 ]
Soares, Heloisa P. [2 ,5 ]
Sinnet-Smith, James [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Div Digest Dis, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, CURE Digest Dis Res Ctr, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Div Hematol Oncol, Los Angeles, CA 90095 USA
关键词
RAPAMYCIN MTOR INHIBITOR; ACTIVATED PROTEIN-KINASE; MAMMALIAN TARGET; PI3K/AKT ACTIVATION; NEGATIVE FEEDBACK; MYELOMA CELLS; BREAST-CANCER; PKC-ALPHA; AKT; PHOSPHORYLATION;
D O I
10.1158/1535-7163.MCT-14-0330
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The development of drug resistance by cancer cells is recognized as a major cause for drug failure and disease progression. The PI3K/AKT/mTOR pathway is aberrantly stimulated in many cancer cells and thus it has emerged as a target for therapy. However, mTORC1 and S6K also mediate potent negative feedback loops that attenuate signaling via insulin/insulin growth factor receptor and other tyrosine kinase receptors. Suppression of these feedback loops causes overactivation of upstream pathways, including PI3K, AKT, and ERK that potentially oppose the antiproliferative effects of mTOR inhibitors and lead to drug resistance. A corollary of this concept is that release of negative feedback loops and consequent compensatory overactivation of promitogenic pathways in response to signal inhibitors can circumvent the mitogenic block imposed by targeting only one pathway. Consequently, the elucidation of the negative feedback loops that regulate the outputs of signaling networks has emerged as an area of fundamental importance for the rational design of effective anticancer combinations of inhibitors. Here, we review pathways that undergo compensatory overactivation in response to inhibitors that suppress feedback inhibition of upstream signaling and underscore the importance of unintended pathway activation in the development of drug resistance to clinically relevant inhibitors of mTOR, AKT, PI3K, or PI3K/mTOR. (C) 2014 AACR.
引用
收藏
页码:2477 / 2488
页数:12
相关论文
共 75 条
[1]   The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level [J].
Ben Sahra, I. ;
Laurent, K. ;
Loubat, A. ;
Giorgetti-Peraldi, S. ;
Colosetti, P. ;
Auberger, P. ;
Tanti, J. F. ;
Le Marchand-Brustel, Y. ;
Bost, F. .
ONCOGENE, 2008, 27 (25) :3576-3586
[2]   Systems-level interactions between insulin-EGF networks amplify mitogenic signaling [J].
Borisov, Nikolay ;
Aksamitiene, Edita ;
Kiyatkin, Anatoly ;
Legewie, Stefan ;
Berkhout, Jan ;
Maiwald, Thomas ;
Kaimachnikov, Nikolai P. ;
Timmer, Jens ;
Hoek, Jan B. ;
Kholodenko, Boris N. .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[3]   JAK2/STAT5 Inhibition Circumvents Resistance to PI3K/mTOR Blockade: A Rationale for Cotargeting These Pathways in Metastatic Breast Cancer [J].
Britschgi, Adrian ;
Andraos, Rita ;
Brinkhaus, Heike ;
Klebba, Ina ;
Romanet, Vincent ;
Mueller, Urs ;
Murakami, Masato ;
Radimerski, Thomas ;
Bentires-Alj, Mohamed .
CANCER CELL, 2012, 22 (06) :796-811
[4]  
Carracedo A, 2008, J CLIN INVEST, V118, P3065, DOI [10.1172/JCI34739, 10.1172/jCI34739]
[5]   Elevation of Receptor Tyrosine Kinases by Small Molecule AKT Inhibitors in Prostate Cancer Is Mediated by Pim-1 [J].
Cen, Bo ;
Mahajan, Sandeep ;
Wang, Wenxue ;
Kraft, Andrew S. .
CANCER RESEARCH, 2013, 73 (11) :3402-3411
[6]   Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors [J].
Chakrabarty, Anindita ;
Sanchez, Violeta ;
Kuba, Maria G. ;
Rinehart, Cammie ;
Arteaga, Carlos L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (08) :2718-2723
[7]   AKT Inhibition Relieves Feedback Suppression of Receptor Tyrosine Kinase Expression and Activity [J].
Chandarlapaty, Sarat ;
Sawai, Ayana ;
Scaltriti, Maurizio ;
Rodrik-Outmezguine, Vanessa ;
Grbovic-Huezo, Olivera ;
Serra, Violeta ;
Majumder, Pradip K. ;
Baselga, Jose ;
Rosen, Neal .
CANCER CELL, 2011, 19 (01) :58-71
[8]   Autoregulation of the Mechanistic Target of Rapamycin (mTOR) Complex 2 Integrity Is Controlled by an ATP-dependent Mechanism [J].
Chen, Chien-Hung ;
Kiyan, Vladimir ;
Zhylkibayev, Assylbek A. ;
Kazyken, Dubek ;
Bulgakova, Olga ;
Page, Kent E. ;
Bersimbaev, Rakhmet I. ;
Spooner, Eric ;
Sarbassov, Dos D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (38) :27019-27030
[9]   Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation [J].
Choo, Andrew Y. ;
Yoon, Sang-Oh ;
Kim, Sang Gyun ;
Roux, Philippe P. ;
Blenis, John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) :17414-17419
[10]   AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity [J].
Chresta, Christine M. ;
Davies, Barry R. ;
Hickson, Ian ;
Harding, Tom ;
Cosulich, Sabina ;
Critchlow, Susan E. ;
Vincent, John P. ;
Ellston, Rebecca ;
Jones, Darren ;
Sini, Patrizia ;
James, Dominic ;
Howard, Zoe ;
Dudley, Phillippa ;
Hughes, Gareth ;
Smith, Lisa ;
Maguire, Sharon ;
Hummersone, Marc ;
Malagu, Karine ;
Menear, Keith ;
Jenkins, Richard ;
Jacobsen, Matt ;
Smith, Graeme C. M. ;
Guichard, Sylvie ;
Pass, Martin .
CANCER RESEARCH, 2010, 70 (01) :288-298