Going off grid: computationally efficient inference for log-Gaussian Cox processes

被引:118
作者
Simpson, D. [1 ]
Illian, J. B. [2 ]
Lindgren, F. [3 ]
Sorbye, S. H. [4 ]
Rue, H. [5 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ St Andrews, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[4] UiT Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
[5] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Approximation of Gaussian random fields; Gaussian Markov random field; Integrated nested Laplace approximation; Spatial point process; Stochastic partial differential equation; INVERSE PROBLEMS; APPROXIMATION; MODELS; DISTRIBUTIONS; DIVERSITY; PATTERNS; FIELDS;
D O I
10.1093/biomet/asv064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces a new method for performing computational inference on log-Gaussian Cox processes. The likelihood is approximated directly by making use of a continuously specified Gaussian random field. We show that for sufficiently smooth Gaussian random field prior distributions, the approximation can converge with arbitrarily high order, whereas an approximation based on a counting process on a partition of the domain achieves only first-order convergence. The results improve upon the general theory of convergence for stochastic partial differential equation models introduced by Lindgren et al. (2011). The new method is demonstrated on a standard point pattern dataset, and two interesting extensions to the classical log-Gaussian Cox process framework are discussed. The first extension considers variable sampling effort throughout the observation window and implements the method of Chakraborty et al. (2011). The second extension constructs a log-Gaussian Cox process on the world's oceans. The analysis is performed using integrated nested Laplace approximation for fast approximate inference.
引用
收藏
页码:49 / 70
页数:22
相关论文
共 51 条
[11]  
Brenner S., 2007, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics
[12]   Ecology - Tropical forest diversity - The plot thickens [J].
Burslem, DFRP ;
Garwood, NC ;
Thomas, SC .
SCIENCE, 2001, 291 (5504) :606-607
[13]   Spatio-temporal modeling of particulate matter concentration through the SPDE approach [J].
Cameletti, Michela ;
Lindgren, Finn ;
Simpson, Daniel ;
Rue, Havard .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) :109-131
[14]   Point pattern modelling for degraded presence-only data over large regions [J].
Chakraborty, Avishek ;
Gelfand, Alan E. ;
Wilson, Adam M. ;
Latimer, Andrew M. ;
Silander, John A. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2011, 60 :757-776
[15]   Analyzing Spatial Point Patterns Subject to Measurement Error [J].
Chakraborty, Avishek ;
Gelfand, Alan E. .
BAYESIAN ANALYSIS, 2010, 5 (01) :97-122
[16]  
Condit R., 1998, Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.
[17]   APPROXIMATION OF BAYESIAN INVERSE PROBLEMS FOR PDES [J].
Cotter, S. L. ;
Dashti, M. ;
Stuart, A. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :322-345
[18]   Fixed rank kriging for very large spatial data sets [J].
Cressie, Noel ;
Johannesson, Gardar .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :209-226
[19]   UNCERTAINTY QUANTIFICATION AND WEAK APPROXIMATION OF AN ELLIPTIC INVERSE PROBLEM [J].
Dashti, M. ;
Stuart, A. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) :2524-2542
[20]   Geostatistical inference under preferential sampling [J].
Diggle, Peter J. ;
Menezes, Raquel ;
Su, Ting-li .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2010, 59 :191-232