Quasi-Periodicity, Chaos and Coexistence in the Time Delay Controlled Two-Cell DC-DC Buck Converter

被引:8
作者
Koubaa, Karama [1 ]
Feki, Moez [2 ]
机构
[1] Univ Sfax, Natl Engn Sch Sfax, CEMLab, Sfax 3038, Tunisia
[2] Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, Sousse, Tunisia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 10期
关键词
Two-cell DC/DC buck converter; time-delayed feedback controller; bifurcation; border collision; Neimark-Sacker; coexistence; FEEDBACK-CONTROL; BIFURCATIONS; ORBITS; MODEL;
D O I
10.1142/S0218127414501247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In addition to border collision bifurcation, the time delay controlled two-cell DC/DC buck converter is shown to exhibit a chaotic behavior as well. The time delay controller adds new design parameters to the system and therefore the variation of a parameter may lead to different types of bifurcation. In this work, we present a thorough analysis of different scenarios leading to bifurcation and chaos. We show that the time delay controlled two-cell DC/DC buck converter may also exhibit a Neimark-Sacker bifurcation which for some parameter set may lead to a 2D torus that may then break yielding a chaotic behavior. Besides, the saturation of the controller can also lead to the coexistence of a stable focus and a chaotic attractor. The results are presented using numerical simulation of a discrete map of the two-cell DC/DC buck converter obtained by expressing successive crossings of Poincare section in terms of each other.
引用
收藏
页数:12
相关论文
共 26 条
  • [1] [Anonymous], 2001, NONLINEAR PHENOMENA
  • [2] Occurrence of multiple attractor bifurcations in the two-dimensional piecewise linear normal form map
    Avrutin, Viktor
    Schanz, Michael
    Banerjee, Soumitro
    [J]. NONLINEAR DYNAMICS, 2012, 67 (01) : 293 - 307
  • [3] On time-delayed feedback control of chaotic systems
    Chen, GR
    Yu, XH
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 767 - 772
  • [4] Bifurcation dynamics in discrete-time delayed-feedback control systems
    Chen, GR
    Lu, JL
    Nicholas, B
    Ranganathan, SM
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (01): : 287 - 293
  • [5] Secondary bifurcations and high periodic orbits in voltage controlled buck converter
    Di Bernardo, M
    Fossas, E
    Olivar, G
    Vasca, F
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2755 - 2771
  • [6] di Bernardo M., 2002, Chaos in circuits and systems, P317, DOI 10.1142/9789812705303_0016
  • [7] STABILIZING A TWO-CELL DC-DC BUCK CONVERTER BY FIXED POINT INDUCED CONTROL
    El Aroudi, A.
    Angulo, F.
    Olivar, G.
    Robert, B. G. M.
    Feki, M.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (06): : 2043 - 2057
  • [8] Quasi-periodic route to chaos in a PWM voltage-controlled DC-DC boost converter
    El Aroudi, A
    Leyva, R
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (08): : 967 - 978
  • [9] Stabilizing the unstable periodic orbits of a chaotic system using model independent adaptive time-delayed controller
    Fourati, A.
    Feki, M.
    Derbel, N.
    [J]. NONLINEAR DYNAMICS, 2010, 62 (03) : 687 - 704
  • [10] Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit
    Gardini, Laura
    Fournier-Prunaret, Daniele
    Charge, Pascal
    [J]. CHAOS, 2011, 21 (02)