A note on congruence lattices of slim semimodular lattices

被引:10
作者
Czedli, Gabor [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
rectangular lattice; planar lattice; semimodular lattice; congruence lattice;
D O I
10.1007/s00012-014-0286-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, G. Gratzer has raised an interesting problem: Which distributive lattices are congruence lattices of slim semimodular lattices? We give an eight element slim distributive lattice that cannot be represented as the congruence lattice of a slim semimodular lattice. Our lattice demonstrates the difficulty of the problem.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 14 条
  • [1] [Anonymous], 1958, Acta Math. Acad. Sci. Hungar.
  • [2] Czedli G, ALUN13108
  • [3] Slim Semimodular Lattices. II. A Description by Patchwork Systems
    Czedli, Gabor
    Schmidt, E. Tamas
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02): : 689 - 721
  • [4] Slim Semimodular Lattices. I. A Visual Approach
    Czedli, Gabor
    Schmidt, E. Tamas
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (03): : 481 - 497
  • [5] Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices
    Czedli, Gabor
    [J]. ALGEBRA UNIVERSALIS, 2012, 67 (04) : 313 - 345
  • [6] The Jordan-Holder theorem with uniqueness for groups and semimodular lattices
    Czedli, Gabor
    Schmidt, E. Tamas
    [J]. ALGEBRA UNIVERSALIS, 2011, 66 (1-2) : 69 - 79
  • [7] Grätzer G, 2011, LATTICE THEORY: FOUNDATION, P1, DOI 10.1007/978-3-0348-0018-1
  • [8] Grätzer G, 2009, ACTA SCI MATH, V75, P29
  • [9] Congruence lattices of finite semimodular lattices
    Gratzer, G
    Lakser, H
    Schmidt, ET
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 290 - 297
  • [10] Gratzer G, 2014, ARXIV13078404