Unified approach to data-driven quantum error mitigation

被引:59
作者
Lowe, Angus [1 ,2 ]
Gordon, Max Hunter [3 ]
Czarnik, Piotr [4 ]
Arrasmith, Andrew [4 ]
Coles, Patrick J. [4 ,5 ]
Cincio, Lukasz [4 ,5 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Autonoma Madrid, CSIC, Inst Fis Teor, Madrid 28049, Spain
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[5] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
关键词
703.1 Electric Networks - 741 Light; Optics and Optical Devices - 761 Nanotechnology - 921.6 Numerical Methods - 922 Statistical Methods;
D O I
10.1103/PhysRevResearch.3.033098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Achieving near-term quantum advantage will require effective methods for mitigating hardware noise. Data-driven approaches to error mitigation are promising, with popular examples including zero-noise extrapolation (ZNE) and Clifford data regression (CDR). Here, we propose a scalable error mitigation method that conceptually unifies ZNE and CDR. Our approach, called variable-noise Clifford data regression (vnCDR), significantly outperforms these individual methods in numerical benchmarks. vnCDR generates training data first via near-Clifford circuits (which are classically simulable) and second by varying the noise levels in these circuits. We employ a noise model obtained from IBM's Ourense quantum computer to benchmark our method. For the problem of estimating the energy of an 8-qubit Ising model system, vnCDR improves the absolute energy error by a factor of 33 over the unmitigated results and by factors of 20 and 1.8 over ZNE and CDR, respectively. For the problem of correcting observables from random quantum circuits with 64 qubits, vnCDR improves the error by factors of 2.7 and 1.5 over ZNE and CDR, respectively.
引用
收藏
页数:12
相关论文
共 40 条
[1]  
Abhijith J., ARXIV180403719CSET ARXIV180403719CSET
[2]  
[Anonymous], ARXIV14114028QUANTPH
[3]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[4]   Mitigating measurement errors in multiqubit experiments [J].
Bravyi, Sergey ;
Sheldon, Sarah ;
Kandala, Abhinav ;
Mckay, David C. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2021, 103 (04)
[5]  
Cai Z., ARXIV200701265
[6]  
Cerezo M., ARXIV200401372
[7]  
Cerezo M., ARXIV201209265
[8]   Detecting highly entangled states with a joint qubit readout [J].
Chow, J. M. ;
DiCarlo, L. ;
Gambetta, J. M. ;
Nunnenkamp, A. ;
Bishop, Lev S. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2010, 81 (06)
[9]   Machine Learning of Noise-Resilient Quantum Circuits [J].
Cincio, Lukasz ;
Rudinger, Kenneth ;
Sarovar, Mohan ;
Coles, Patrick J. .
PRX QUANTUM, 2021, 2 (01)
[10]   Learning the quantum algorithm for state overlap [J].
Cincio, Lukasz ;
Subasi, Yigit ;
Sornborger, Andrew T. ;
Coles, Patrick J. .
NEW JOURNAL OF PHYSICS, 2018, 20