Large-sample estimation strategies for eigenvalues of a Wishart matrix

被引:3
作者
Ahmed, SE [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
Wishart distribution; eigenvalues; covariance matrix; James-Stein type estimators; positive-part estimators; asymptotic quadratic bias and risk;
D O I
10.1007/BF02742863
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of simultaneous asymptotic estimation of eigenvalues of covariance matrix of Wishart matrix is considered under a weighted quadratic loss function. James-Stein type of estimators are obtained which dominate the sample eigenvalues. The relative merits of the proposed estimators are compared to the sample eigenvalues using asymptotic quadratic distributional risk under loal alternatives. It is shown that the proposed estimators are asymptotically superior to the sample eigenvalues. Further, it is demonstrated that the James-Stein type estimator is dominated by its truncated part.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 19 条
[1]   LARGE-SAMPLE POOLING PROCEDURE FOR CORRELATION [J].
AHMED, SE .
STATISTICIAN, 1992, 41 (04) :425-438
[2]  
AHMED SE, 1993, JAPAN J STAT, V43, P177
[3]   ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01) :122-&
[4]  
Berger JO., 1985, Statistical Decision Theory and Bayesian Analysis, V2, DOI DOI 10.1007/978-1-4757-4286-2
[5]  
Brandwein AC., 1990, Statistical Science, V5, P356, DOI DOI 10.1214/SS/1177012104
[6]   SIMULTANEOUS ESTIMATION OF EIGENVALUES [J].
DEY, DK .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1988, 40 (01) :137-147
[7]  
DEY DK, 1986, ANN I STAT MATH, V38, P47
[8]  
GRISCHICK MA, 1939, ANN MATH STAT, V10, P203
[9]  
HOFFMAN K, 1992, IMPROVED ESTIMATION
[10]  
James Willard., 1961, CONTRIBUTIONS THEORY, V1, P361