A simple approach to improve the robustness of equation-oriented simulators: Multilinear look-up table interpolators

被引:10
作者
Furlan, Felipe Fernando [1 ]
de Andrade Lino, Anderson Rodrigo [2 ]
Matugi, Karina [1 ]
Goncalves Cruz, Antonio Jose [1 ,2 ]
Secchi, Argimiro Resende [3 ]
Giordano, Roberto de Campos [1 ,2 ]
机构
[1] Univ Fed Sao Carlos UFSCar, Chem Engn Grad Program, Rodovia Washington Luis SP 310,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos UFSCar, Dept Chem Engn, UFSCar, Rodovia Washington Luis SP 310,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Fed Rio de Janeiro, UFRJ, COPPE, Chem Engn Grad Program, Cidade Univ, BR-21941972 Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Robustness of equation-oriented simulators; Multilinear look-up table interpolators; 1G-2G bioethanol production; Particle swarm optimization;
D O I
10.1016/j.compchemeng.2015.12.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Equation-oriented simulators have some advantages over the modular sequential ones, but improvements are still necessary to deal with nonlinearities, while preserving the robustness of the solver. Linear approximations and/or surrogate models can be used in place of nonlinear models, but the loss of predictive accuracy may be a drawback. An alternative to circumvent this problem is the use of grid-based look-up tables for interpolating responses from rigorous models. This methodology was integrated in an equation-oriented simulator (EMSO). A case study involving the production of bioethanol from sugarcane is used to demonstrate the robustness of this approach. Look-up tables replaced the models of two distillation column trains and of the cellulose hydrolysis reactor. These models were included into the global process and an optimization problem aiming at the maximum production of ethanol was successfully solved by a PSO algorithm varying the solid mass fraction in the hydrolysis reactor. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 10 条
[1]   Kinetic modeling for enzymatic hydrolysis of pretreated sugarcane straw [J].
Angarita, J. D. ;
Souza, R. B. A. ;
Cruz, A. J. G. ;
Biscaia, E. C., Jr. ;
Secchi, A. R. .
BIOCHEMICAL ENGINEERING JOURNAL, 2015, 104 :10-19
[2]  
Biegler L. T., 1997, SYSTEMATIC METHODS C
[3]  
Dias MOS., 2008, THESIS U ESTADUAL CA
[4]   Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? [J].
Furlan, Felipe F. ;
Tonon Filho, Renato ;
Pinto, Fabio H. P. B. ;
Costa, Caliane B. B. ;
Cruz, Antonio J. G. ;
Giordano, Raquel L. C. ;
Giordano, Roberto C. .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[5]   Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling [J].
Furlan, Felipe Fernando ;
Borba Costa, Caliane Bastos ;
Fonseca, Gabriel de Castro ;
Soares, Rafael de Pelegrini ;
Secchi, Argimiro Resende ;
Goncalves da Cruz, Antonio Jose ;
Giordano, Roberto de Campos .
COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 :1-9
[6]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[7]  
MORTON W., 2003, P INDIAN NATL SCI AC, V69, P317
[8]  
Nelles O., 2001, NONLINEAR SYSTEM IDE, P219
[9]  
Soares RDP, 2003, COMP AID CH, V14, P947
[10]   On-line adaptation of grid-based look-up tables using a fast linear regression technique [J].
Vogt, M ;
Müller, N ;
Isermann, R .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2004, 126 (04) :732-739