Atkinson's super-linear oscillation theorem for matrix dynamic equations on a time scale

被引:7
作者
Ou, LM [1 ]
机构
[1] Zhongshan Univ, Dept math Sun Yat Sen, Guangzhou 510275, Peoples R China
关键词
time scales; Riccati technique; operator; oscillation; non-oscillation;
D O I
10.1016/j.jmaa.2004.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying the Riccati technique and operator theory, we establish on a time scale T both 2 oscillation and non-oscillation criteria for Atkinson's super-linear matrix dynamic equation X-Delta2 + [X-m (t)Q(t)X*(m)(t)](sigma) X-sigma (t) = 0. These results extend and unify earlier results for the differential and difference equation case. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:615 / 629
页数:15
相关论文
共 12 条
[1]   Quadratic functionals for second order matrix equations on time scales [J].
Agarwal, RP ;
Bohner, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (07) :675-692
[2]   Sturm-Liouville eigenvalue problems on time scales [J].
Agarwal, RP ;
Bohner, M ;
Wong, PJY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :153-166
[3]   OSCILLATION OF SUPERLINEAR MATRIX DIFFERENTIAL-EQUATIONS [J].
AHLBRANDT, CD ;
RIDENHOUR, J ;
THOMPSON, RC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (01) :141-148
[4]  
ATKINSON FV, 1955, PAC J MATH, V5, P643
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
BUTLER GJ, 1985, FUNKC EKVACIOJ-SER I, V28, P47
[7]   Oscillation criteria for second-order matrix dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :169-185
[8]  
HILGER S, 1990, RESULTS MATH, V183, P18
[9]  
Horn R. A., 1991, Matrix Analysis
[10]  
KURA T, 1982, FUNKC EKVACIOJ-SER I, V25, P223