Velocity formulae between entropy and hitting time for Markov chains

被引:1
作者
Choi, Michael C. H. [1 ]
机构
[1] Chinese Univ Hong Kong, Inst Data & Decis Analyt, Shenzhen 518172, Guangdong, Peoples R China
关键词
Entropy; Hitting time; Commute time; Eigentime; Random walk; TRAJECTORIES;
D O I
10.1016/j.spl.2018.05.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the absence of acceleration, the velocity formula gives "distance travelled equals speed multiplied by time". For a broad class of Markov chains such as circulant Markov chains or random walk on complete graphs, we prove a probabilistic analogue of the velocity formula between entropy and hitting time, where distance is the entropy of the Markov trajectories from state i to state j in the sense of Ekroot and Cover (1993), speed is the classical entropy rate of the chain, and the time variable is the expected hitting time between i and j. This motivates us to define new entropic counterparts of various hitting time parameters such as average hitting time or commute time, and prove analogous velocity formulae and estimates between these quantities. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 9 条
  • [1] Aldous D., 2002, UNFINISHED MONOGRAPH
  • [2] [Anonymous], 2009, American Mathematical Soc.
  • [3] Maximum entropy mixing time of circulant Markov processes
    Avrachenkov, Konstantin
    Cottatellucci, Laura
    Maggi, Lorenzo
    Mao, Yong-Hua
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (03) : 768 - 773
  • [4] Eigentime identity for asymmetric finite Markov chains
    Cui, Hao
    Mao, Yong-Hua
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (04) : 623 - 634
  • [5] Diaconis P, 1996, ANN APPL PROBAB, V6, P695
  • [6] THE ENTROPY OF MARKOV TRAJECTORIES
    EKROOT, L
    COVER, TM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) : 1418 - 1421
  • [7] The Entropy of Conditional Markov Trajectories
    Kafsi, Mohamed
    Grossglauser, Matthias
    Thiran, Patrick
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5577 - 5583
  • [8] MONTENEGRO R, 2006, FDN TRENDS THEOR COM, V1
  • [9] Thomas M., 2006, Elements of Information Theory