MXene-Based Co, N-Codoped Porous Carbon Nanosheets Regulating Polysulfides for High-Performance Lithium-Sulfur Batteries

被引:69
作者
Wang, Jingtao [1 ,2 ]
Zhao, Tongkun [1 ]
Yang, Zhihao [1 ]
Chen, Yang [1 ]
Liu, Yong [1 ]
Wang, Junxiao [1 ]
Zhai, Pengfei [1 ]
Wu, Wenjia [1 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; carbon nanosheets; lithium-sulfur batteries; regulating polysulfides; integrated electrode; HIGH-ENERGY-DENSITY; SEPARATOR; CONVERSION; FRAMEWORK; CAPACITY; NITROGEN; CATHODE; HOST; LIFE;
D O I
10.1021/acsami.9b11988
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In virtue of their distinctive superiorities, lithium-sulfur (Li-S) batteries were deemed as novel and potential energy storage equipment. However, the low actual energy density and rapid capacity fading are still hindering their practical applications. Herein, MXene-based Co, N-codoped porous carbon nanosheets (MCoNPCNSs) are first developed as sulfur hosts by in situ self-assembly of the bimetallic zeolite imidazole framework on Ti3C2Tx MXene nanosheets followed by calcining and etching treatments. Co, N codoping on the one hand highly enhances the adsorptivity to polysulfides and on the other hand significantly promotes the kinetics of sulfur cathodes. Therefore, the MCoNPCNSs/S-M-PP electrode achieves a high capacity of 1340.2 mA h g(-1) in the first-cycle discharge process at 0.2 C and an exceptional capacity retention of 914.7 mA h g(-1) after 1000 cycles at 1 C. Moreover, the integrated structure of the cathode and separator imparts the MCoNPCNSs/S-M-PP electrode a significantly elevated gravimetric energy density of 1211.8 W h kg(-1). Therefore, the integrated MCoNPCNSs/S-M-PP electrode provides a delighted direction for constructing the potentially practical Li-S batteries.
引用
收藏
页码:38654 / 38662
页数:9
相关论文
共 53 条
[1]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[2]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[3]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[4]   The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High-Performance Li-S Full Cell [J].
Cai, Wenlong ;
Li, Gaoran ;
Luo, Dan ;
Xiao, Guannan ;
Zhu, Shanshan ;
Zhao, Yingyue ;
Chen, Zhongwei ;
Zhu, Yongchun ;
Qian, Yitai .
ADVANCED ENERGY MATERIALS, 2018, 8 (34)
[5]   From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis [J].
Chen, Yu-Zhen ;
Wang, Chengming ;
Wu, Zhen-Yu ;
Xiong, Yujie ;
Xu, Qiang ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ADVANCED MATERIALS, 2015, 27 (34) :5010-5016
[6]   Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions [J].
Chu, Hyunwon ;
Noh, Hyungjun ;
Kim, Yun-Jung ;
Yuk, Seongmin ;
Lee, Ju-Hyuk ;
Lee, Jinhong ;
Kwack, Hobeom ;
Kim, YunKyoung ;
Yang, Doo-Kyung ;
Kim, Hee-Tak .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (33) :5299-5306
[8]   MXene molecular sieving membranes for highly efficient gas separation [J].
Ding, Li ;
Wei, Yanying ;
Li, Libo ;
Zhang, Tao ;
Wang, Haihui ;
Xue, Jian ;
Ding, Liang-Xin ;
Wang, Suqing ;
Caro, Juergen ;
Gogotsi, Yury .
NATURE COMMUNICATIONS, 2018, 9
[9]   All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries [J].
Dong, Yanfeng ;
Zheng, Shuanghao ;
Qin, Jieqiong ;
Zhao, Xuejun ;
Shi, Haodong ;
Wang, Xiaohui ;
Chen, Jian ;
Wu, Zhong-Shuai .
ACS NANO, 2018, 12 (03) :2381-2388
[10]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985