Low-cycle fatigue behavior and deformation mechanisms of a dual-phase Al0.5CoCrFeMnNi high-entropy alloy

被引:34
作者
Lu, Kaiju [1 ]
Knopfle, Fabian [1 ]
Chauhan, Ankur [1 ,2 ]
Jeong, H. T. [3 ]
Litvinov, Dimitri [1 ]
Walter, Mario [1 ]
Kim, W. J. [3 ]
Aktaa, Jarir [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat, Hermann-von-Helmholtz-Pl 1,Eggenstein-leopoldshaf, D-76344 Karlsruhe, Germany
[2] Indian Inst Sci, Dept Mat Engn, Bengaluru 560012, Karnataka, India
[3] Hongik Univ, Dept Mat Sci & Engn, Sangsu-dong 72-1, Seoul 121791, South Korea
关键词
High-entropy alloy; Dual-phase; Fatigue; Transmission electron microscopy; Dislocation; STRESS-STRAIN RESPONSE; SEVERE PLASTIC-DEFORMATION; MICROSTRUCTURAL EVOLUTION; TEMPERATURE; METALS; DAMAGE;
D O I
10.1016/j.ijfatigue.2022.107075
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We uncover the low-cycle fatigue response and deformation mechanisms of a dual-phase Al0.5CoCrFeMnNi high-entropy alloy (HEA) by comparing to CoCrFeMnNi HEA. Al0.5CoCrFeMnNi demonstrates higher cyclic stress resistance, meanwhile maintaining comparable cyclic strain resistance at low-to-medium strain amplitudes. Microstructural investigations revealed dislocation slip as the primary deformation mechanism, which changes from planar slip to wavy slip with increasing strain amplitude. The enhanced cyclic stress resistance is related to precipitation hardening and improved solid solution strengthening. Meanwhile, the comparable cyclic strain resistance is ascribed to their similar deformation mode. Lastly, comparisons with Al0.5CoCrFeNi and CoCrNi alloys provide strategies for tailoring HEAs with enhanced fatigue resistance.
引用
收藏
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 1953, Behavior of materials under conditions of thermal stress
[2]  
[Anonymous], 2013, AE271413 ASTM INT, P1
[3]  
Bahadur F, 2021, INT J FATIGUE
[4]   THE CYCLIC STRESS-STRAIN RESPONSE AND DISLOCATION-STRUCTURES OF CU-16 AT-PERCENT AL-ALLOY .3. SINGLE-CRYSTALS FATIGUED AT LOW STRAIN AMPLITUDES [J].
BUCHINGER, L ;
CHENG, AS ;
STANZL, S ;
LAIRD, C .
MATERIALS SCIENCE AND ENGINEERING, 1986, 80 (02) :155-167
[5]  
Coffin LF, 1954, T AM SOC MECH ENG, V76, P931, DOI DOI 10.1115/1.4015020
[6]   CYCLIC STRESS-STRAIN RESPONSE OF FCC METALS AND ALLOYS .1. PHENOMENOLOGICAL EXPERIMENTS [J].
FELTNER, CE ;
LAIRD, C .
ACTA METALLURGICA, 1967, 15 (10) :1621-&
[7]   Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J].
Feng, Rui ;
Rao, You ;
Liu, Chuhao ;
Xie, Xie ;
Yu, Dunji ;
Chen, Yan ;
Ghazisaeidi, Maryam ;
Ungar, Tamas ;
Wang, Huamiao ;
An, Ke ;
Liaw, Peter K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Ultrastrong Al0.1CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins [J].
Feng, Xiaobin ;
Zhang, Jinyu ;
Wu, Kai ;
Liang, Xiaoqing ;
Liu, Gang ;
Sun, Jun .
NANOSCALE, 2018, 10 (28) :13329-13334
[9]   ON THE ORIGIN OF PLANAR SLIP IN FCC ALLOYS [J].
GEROLD, V ;
KARNTHALER, HP .
ACTA METALLURGICA, 1989, 37 (08) :2177-2183
[10]   Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Thurston, Keli V. S. ;
Bei, Hongbin ;
Wu, Zhenggang ;
George, Easo P. ;
Ritchie, Robert O. .
NATURE COMMUNICATIONS, 2016, 7