Microstructure Controlled Porous Silicon Particles as a High Capacity Lithium Storage Material via Dual Step Pore Engineering

被引:120
作者
Sohn, Myungbeom [1 ]
Lee, Dong Geun [1 ]
Park, Hyeong-Il [1 ]
Park, Cheolho [2 ]
Choi, Jeong-Hee [3 ]
Kim, Hansu [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] Iljin Elect Co Ltd, Next G Inst Technol, Ansan 15427, South Korea
[3] Korea Electrotechnol Res Inst, Chang Won 51543, South Korea
关键词
anodes; chemical etching; Li-ion batteries; porous materials; silicon; AL-SI ALLOY; ION BATTERIES; NEGATIVE ELECTRODE; ENERGY DENSITY; ANODE MATERIAL; VOLUME-CHANGE; IN-SITU; POWDER; CARBON; NANOPARTICLES;
D O I
10.1002/adfm.201800855
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To overcome the lithium storage barriers of current lithium-ion batteries, it is imperative that conventional low capacity graphite anodes be replaced with other higher capacity anode materials. Silicon is a promising alternative anode material due to its huge energy densities; however, its lithium-concentration-dependent volumetric changes can induce severely adverse effects that lead to drastic degradations in capacity during cycling. The dealloying of Si-metal alloys is recently suggested as a scalable approach to fabricate high-performance porous Si anode materials. Herein, a microstructure controlled porous Si is developed by the dealloying in conjunction with wet alkaline chemical etching. The resulting 3D networked structure enables enhancement in lithium storage properties when the Si-based material is applied not only as a single active material but also in a graphite-blended electrode.
引用
收藏
页数:8
相关论文
共 65 条
[1]   Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2015, 5 (13)
[2]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[3]   High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching [J].
Bang, Byoung Man ;
Lee, Jung-In ;
Kim, Hyunjung ;
Cho, Jaephil ;
Park, Soojin .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :878-883
[4]   Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching [J].
Bang, Byoung Man ;
Kim, Hyunjung ;
Song, Hyun-Kon ;
Cho, Jaephil ;
Park, Soojin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :5013-5019
[5]   A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell [J].
Bower, A. F. ;
Guduru, P. R. ;
Sethuraman, V. A. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :804-828
[6]   Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3348-3367
[7]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[8]   Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Ko, Minseong ;
Kim, Kyungho ;
Ahn, Kihong ;
Cho, Jaephil .
JOULE, 2017, 1 (01) :47-60
[9]   Porous Si anode materials for lithium rechargeable batteries [J].
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4009-4014
[10]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)