A Wireless IC for Time-Share Chemical and Electrical Neural Recording

被引:49
作者
Roham, Masoud [1 ]
Covey, Daniel P. [2 ,3 ]
Daberkow, David P. [2 ,3 ]
Ramsson, Eric S. [2 ,3 ]
Howard, Christopher D. [2 ,3 ]
Heidenreich, Byron A. [2 ,3 ]
Garris, Paul A. [2 ,3 ]
Mohseni, Pedram [1 ,4 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
[2] Illinois State Univ, Dept Biol Sci, Normal, IL 61790 USA
[3] Illinois State Univ, Dept Psychol, Normal, IL 61790 USA
[4] Adv Platform Technol Ctr, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
Delta-sigma modulator; dopamine; fast-scan cyclic voltammetry; neurochemical monitoring; neuroelectrical recording; wireless integrated circuit; CYCLIC VOLTAMMETRY; DOPAMINE RELEASE; TELEMETRY; MICROELECTRODES; POTENTIOSTAT; ADSORPTION; DIFFUSION; ACCUMBENS; AMPLIFIER; CIRCUITS;
D O I
10.1109/JSSC.2009.2035549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 1.1-mW 4-channel integrated circuit for wireless time-share monitoring of chemical and electrical neural activity in the brain is described. The chip architecture can be configured to perform neurochemical monitoring using 300-V/s fast-scan cyclic voltammetry (FSCV) and neuroelectrical recording using extracellular electrophysiology. The 5-mm(2) IC is fabricated in AMI 0.5 mu m double-poly triple-metal n-well CMOS process and uses a 76-mu W, third-order, continuous-time, Delta Sigma modulator (CT-Delta Sigma M) per channel that achieves an input-referred noise of 56.7 pA(rms) (dc-5 kHz) and 3.5 mu V-rms (1.1-5 kHz) for chemical and electrical neuromonitoring, respectively. The chip architecture also incorporates monolithic circuitry for generating FSCV and biphasic constant-current stimulus waveforms. The chip has been externally interfaced with carbon-fiber microelectrodes (CFMs) implanted acutely in the caudate-putamen of an anesthetized rat, and enables chemically resolved monitoring of electrically evoked dopamine release and its postsynaptic bioelectrical response at the same recording site. The dopamine limit of detection (LOD) corresponding to a signal-to-rms noise ratio of three is estimated to be 16.7 nM based on the measured noise performance of the device and its sensitivity to dopamine determined empirically via flow injection analysis. This detection limit compares favorably with the amplitude of phasic dopamine transients that varies in the range of 40 nM-1 mu M.
引用
收藏
页码:3645 / 3658
页数:14
相关论文
共 45 条
[1]  
Arabi K, 1999, IEEE Trans Rehabil Eng, V7, P204, DOI 10.1109/86.769411
[2]   A 5 μW/Channel Spectral Analysis IC for Chronic Bidirectional Brain-Machine Interfaces [J].
Avestruz, Al-Thaddeus ;
Santa, Wesley ;
Carlson, Dave ;
Jensen, Randy ;
Stanslaski, Scott ;
Helfenstine, Alan ;
Denison, Tim .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (12) :3006-3024
[3]  
Bard A. J., 2001, ELECTROCHEMICAL METH
[4]   Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes [J].
Bath, BD ;
Michael, DJ ;
Trafton, BJ ;
Joseph, JD ;
Runnels, PL ;
Wightman, RM .
ANALYTICAL CHEMISTRY, 2000, 72 (24) :5994-6002
[5]   Toward feedback controlled deep brain stimulation: Dynamics of glutamate release in the subthalamic nucleus in rats [J].
Behrend, Christina E. ;
Cassim, Shiraz M. ;
Pallone, Matthew J. ;
Daubenspeck, J. Andrew ;
Hartov, A. ;
Roberts, David W. ;
Leiter, J. C. .
JOURNAL OF NEUROSCIENCE METHODS, 2009, 180 (02) :278-289
[6]   'Passive stabilization' of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson's disease: a voltammetric study in the 6-OHDA-lesioned rat [J].
Bergstrom, BP ;
Garris, PA .
JOURNAL OF NEUROCHEMISTRY, 2003, 87 (05) :1224-1236
[7]  
Borland LM, 2007, FRONT NEUROENG, V1, P1
[8]   Microelectrodes for the measurement of catecholamines in biological systems [J].
Cahill, PS ;
Walker, QD ;
Finnegan, JM ;
Mickelson, GE ;
Travis, ER ;
Wightman, RM .
ANALYTICAL CHEMISTRY, 1996, 68 (18) :3180-3186
[9]   Functional microcircuitry in the accumbens underlying drug addiction: insights from real-time signaling during behavior [J].
Carelli, RM ;
Wightman, RM .
CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (06) :763-768
[10]  
Chae M S, 2008, IEEE INT SOL STAT CI, P146