Blow-up phenomena for a family of Burgers-like equations

被引:0
作者
Niu, Weisheng [1 ]
Sun, Xiaotong [1 ]
Chai, Xiaojuan [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Burgers-like equations; Blow-up; Blow-up rate; DEGASPERIS-PROCESI EQUATION; SHALLOW-WATER EQUATION; GLOBAL EXISTENCE; WELL-POSEDNESS; INTEGRABLE EQUATION; BREAKING; SOLITONS; WAVES;
D O I
10.1016/j.jmaa.2009.10.074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By introducing a stress multiplier we derive a family of Burgers-like equations. We investigate the blow-up phenomena of the equations both on the real line R and on the circle S to get a comparison with the Degasperis-Procesi equation. On the line R, we first establish the local well-posedness and the blow-up scenario. Then we use conservation laws of the equations to get the estimate for the L(infinity)-norm of the strong solutions, by which we prove that the solutions to the equations may blow up in the form of wave breaking for certain initial profiles. Analogous results are provided in the periodic case. Especially, we find differences between the Burgers-like equations and the Degasperis-Procesi equation, see Remark 4.1. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:508 / 521
页数:14
相关论文
共 24 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   On the well-posedness of the Degasperis-Procesi equation [J].
Coclite, GM ;
Karlsen, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :60-91
[3]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[4]  
2-5
[5]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[6]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[7]  
2-D
[8]   Stability of the Camassa-Holm solitons [J].
Constantin, A ;
Strauss, WA .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :415-422
[9]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970
[10]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+