Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge

被引:5
作者
Yao Fu-rong [1 ,2 ,3 ,4 ]
Pan Ming-qiang [1 ,2 ,3 ,4 ]
Zhu Zong-jian [1 ,2 ,3 ,4 ]
Liu Ji-zhu [1 ,2 ,3 ,4 ]
Wang Yang-jun [1 ,2 ,3 ,4 ]
机构
[1] Soochow Univ, Coll Mechatron Engn, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Adv Robot Technol, Suzhou 215123, Peoples R China
[4] Soochow Univ, Robot & Microsyst Ctr, Suzhou 215123, Peoples R China
关键词
dielectric barrier discharge; anodic bonding; ultra-low temperature;
D O I
10.1007/s11771-021-4607-z
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The article improves the process of dielectric barrier discharge (DBD) activated anode bonding. The treated surface was characterized by the hydrophilic surface test. The results showed that the hydrophilic angle was significantly reduced under nano-gap conditions and the optimal discharge voltage was 2 kV Then, the anodic bonding and dielectric barrier discharge activated bonding were performed in comparison experiments, and the bonding strength was characterized by tensile failure test. The results showed that the bonding strength was higher under the nano-gap dielectric barrier discharge. This process completed 110 degrees C ultra-low temperature anodic bonding and the bonding strength reached 2 MPa. Finally, the mechanism of promoting bonding after activation is also discussed.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 28 条
[1]  
Bargiel S., 2013, P SPIE INT SOC OPTIC, V8616, P5
[2]   Electron-beam microcolumns for lithography and related applications [J].
Chang, THP ;
Thomson, MGR ;
Kratschmer, E ;
Kim, HS ;
Yu, ML ;
Lee, KY ;
Rishton, SA ;
Hussey, BW ;
Zolgharnain, S .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (06) :3774-3781
[3]   Reliability of anodically bonded silicon-glass packages [J].
Chen, MX ;
Yi, XJ ;
Gan, ZY ;
Liu, S .
SENSORS AND ACTUATORS A-PHYSICAL, 2005, 120 (01) :291-295
[4]   The analysis of oxygen plasma pretreatment for improving anodic bonding [J].
Choi, SW ;
Choi, WB ;
Lee, YH ;
Ju, BK ;
Sung, MY ;
Kim, BH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (01) :G8-G11
[5]   Surface Treatment of PEOT/PBT (55/45) with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure [J].
Cools, Pieter ;
Asadian, Mahtab ;
Nicolaus, Wannes ;
Declercq, Heidi ;
Morent, Rino ;
De Geyter, Nathalie .
MATERIALS, 2018, 11 (03)
[6]   Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs [J].
Daschner, R. ;
Kuebler, H. ;
Loew, R. ;
Baur, H. ;
Fruehauf, N. ;
Pfau, T. .
APPLIED PHYSICS LETTERS, 2014, 105 (04)
[7]   Wafer-level plasma activated bonding: new technology for MEMS fabrication [J].
Dragoi, Viorel ;
Mittendorfer, Gerald ;
Thanner, Christine ;
Lindner, Paul .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2008, 14 (4-5) :509-515
[8]   Void-free strong bonding of surface activated silicon wafers from room temperature to annealing at 600 °C [J].
Howlader, M. M. R. ;
Zhang, F. .
THIN SOLID FILMS, 2010, 519 (02) :804-808
[9]   Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200°C [J].
Howlader, M. M. R. ;
Kibria, M. G. ;
Zhang, F. ;
Kim, M. J. .
TALANTA, 2010, 82 (02) :508-515
[10]   Anodic bonding of glass and silicon wafers with an intermediate silicon nitride film and its application to batch fabrication of SPM tip arrays [J].
Hsieh, GW ;
Tsai, CH ;
Lin, WC .
MICROELECTRONICS JOURNAL, 2005, 36 (07) :678-682