Comparative Study of Charge Transport in Si and Ge Nanowires

被引:0
作者
Verma, A. [1 ]
Buin, A. K. [2 ]
Anantram, M. P. [3 ]
机构
[1] Texas A&M Univ, Dept Elect Engn & Comp Sci, Kingsville, TX USA
[2] Univ Montreal, Dept Chim, Montreal, PQ, Canada
[3] Univ Washington, Dept Elect Engn, Seattle, WA USA
来源
2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE | 2009年
关键词
Germanium nanowires; silicon nanowires; low-field mobility; high-field transport; ensemble Monte Carlo;
D O I
10.1109/NMDC.2009.5167559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on detailed calculations of charge mobility in small diameter Ge nanowires, and a comparison with equivalent diameter Si nanowires. The basis for the calculations is provided by band structure calculations within a sp(3)d(5)s* tight-binding scheme. Charge-phonon scattering rates are evaluated using Fermi's Golden Rule. Mobility calculations are performed using multi-subband momentum relaxation time approximation. In addition, high-field charge transport is also compared among the two classes of materials. High-field transport results are evaluated using ensemble Monte Carlo simulation. High-field transport behavior is found to be qualitatively similar between Si and Ge nanowires, while low-field mobility results show interesting behavior when compared to bulk Si and Ge. Besides providing. a comparative analysis of the behavior of these materials, our work also helps to place an upper bound on their expected electronic response.
引用
收藏
页码:64 / +
页数:2
相关论文
共 50 条
[41]   First-Principles Study on The Electro-Mechanical Coupling of The Si/Ge Core-Shell Nanowires [J].
Li, Lei ;
Lei, ShuangYing ;
Wang, RuoYu ;
Yu, Hong ;
Huang, QingAn .
2013 8TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE NEMS 2013), 2013, :833-836
[42]   The growth and characterization of Si and Ge nanowires grown from reactive metal catalysts [J].
Ross, F. M. ;
Wen, C. -Y. ;
Kodambaka, S. ;
Wacaser, B. A. ;
Reuter, M. C. ;
Stach, E. A. .
PHILOSOPHICAL MAGAZINE, 2010, 90 (20) :2807-2816
[43]   The growth and characterization of Si and Ge nanowires grown from reactive metal catalysts [J].
Ross, F. M. ;
Wen, C. -Y. ;
Kodambaka, S. ;
Wacaser, B. A. ;
Reuter, M. C. ;
Stach, E. A. .
PHILOSOPHICAL MAGAZINE, 2010, 90 (35-36) :4769-4778
[44]   Tuning lattice thermal conductance by porosity control in ultrascaled Si and Ge nanowires [J].
Paul, Abhijeet ;
Klimeck, Gerhard .
APPLIED PHYSICS LETTERS, 2011, 98 (08)
[45]   Significant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires [J].
Hu, Ming ;
Giapis, Konstantinos P. ;
Goicochea, Javier V. ;
Zhang, Xiaoliang ;
Poulikakos, Dimos .
NANO LETTERS, 2011, 11 (02) :618-623
[46]   Limit for thermal transport reduction in Si nanowires with nanoengineered corrugations [J].
Sullivan, Sean E. ;
Lin, Keng-Hua ;
Avdoshenko, Stanislav ;
Strachan, Alejandro .
APPLIED PHYSICS LETTERS, 2013, 103 (24)
[47]   Strong Surface Orientation Dependent Thermal Transport in Si Nanowires [J].
Zhou, Yanguang ;
Chen, Yuli ;
Hu, Ming .
SCIENTIFIC REPORTS, 2016, 6
[48]   Strain engineering of band offsets in Si/Ge core-shell nanowires [J].
Huang, Shouting ;
Yang, Li .
APPLIED PHYSICS LETTERS, 2011, 98 (09)
[49]   Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires [J].
Yang, Kaike ;
Cantarero, Andres ;
Rubio, Angel ;
D'Agosta, Roberto .
NANO RESEARCH, 2015, 8 (08) :2611-2619
[50]   Thermodynamic driving force in the formation of hexagonal-diamond Si and Ge nanowires [J].
Scalise, E. ;
Sarikov, A. ;
Barbisan, L. ;
Marzegalli, A. ;
Migas, D. B. ;
Montalenti, F. ;
Miglio, L. .
APPLIED SURFACE SCIENCE, 2021, 545