Comparative Study of Charge Transport in Si and Ge Nanowires

被引:0
作者
Verma, A. [1 ]
Buin, A. K. [2 ]
Anantram, M. P. [3 ]
机构
[1] Texas A&M Univ, Dept Elect Engn & Comp Sci, Kingsville, TX USA
[2] Univ Montreal, Dept Chim, Montreal, PQ, Canada
[3] Univ Washington, Dept Elect Engn, Seattle, WA USA
来源
2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE | 2009年
关键词
Germanium nanowires; silicon nanowires; low-field mobility; high-field transport; ensemble Monte Carlo;
D O I
10.1109/NMDC.2009.5167559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on detailed calculations of charge mobility in small diameter Ge nanowires, and a comparison with equivalent diameter Si nanowires. The basis for the calculations is provided by band structure calculations within a sp(3)d(5)s* tight-binding scheme. Charge-phonon scattering rates are evaluated using Fermi's Golden Rule. Mobility calculations are performed using multi-subband momentum relaxation time approximation. In addition, high-field charge transport is also compared among the two classes of materials. High-field transport results are evaluated using ensemble Monte Carlo simulation. High-field transport behavior is found to be qualitatively similar between Si and Ge nanowires, while low-field mobility results show interesting behavior when compared to bulk Si and Ge. Besides providing. a comparative analysis of the behavior of these materials, our work also helps to place an upper bound on their expected electronic response.
引用
收藏
页码:64 / +
页数:2
相关论文
共 50 条
[21]   Understanding doping at the nanoscale: the case of codoped Si and Ge nanowires [J].
Amato, Michele ;
Rurali, Riccardo ;
Palummo, Maurizia ;
Ossicini, Stefano .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (39)
[22]   Effects of transverse geometry on the thermal conductivity of Si and Ge nanowires [J].
Heris, Hadi Rezaie ;
Kateb, Movaffaq ;
Erlingsson, Sigurdur I. ;
Manolescu, Andrei .
SURFACES AND INTERFACES, 2022, 30
[23]   Atomistic Design of High Thermoelectricity on Si/Ge Superlattice Nanowires [J].
Chen, Xin ;
Wang, Ziwei ;
Ma, Yanming .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42) :20696-20702
[24]   Effect of impurities on charge and heat transport in tubular nanowires [J].
Heris, Hadi Rezaie ;
Klausen, K. O. ;
Sitek, Anna ;
Erlingsson, Sigurdur, I ;
Manolescu, Andrei .
NANOTECHNOLOGY, 2023, 34 (33)
[25]   Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires [J].
Forrer, Nicolas ;
Nigro, Arianna ;
Gadea, Gerard ;
Zardo, Ilaria .
NANOMATERIALS, 2023, 13 (21)
[26]   Synthesis of Sn-catalyzed Ge nanowires and Ge/Si heterostructures via a gradient method [J].
Zhu, Xianjun ;
Shen, Ya ;
Florea, Ileana ;
Cabarrocas, Pere Roca i ;
Chen, Wanghua .
MATERIALS LETTERS, 2025, 379
[27]   Phonon transport in Si nanowires with elastically dissimilar barriers [J].
Oh, Jung Hyun ;
Jang, Moon-Gyu ;
Shin, Mincheol ;
Lee, Seok-Hee .
APPLIED PHYSICS LETTERS, 2012, 100 (11)
[28]   Transport properties of Sb-doped Si nanowires [J].
Nukala, Prathyusha ;
Sapkota, Gopal ;
Gali, Pradeep ;
Philipose, U. .
JOURNAL OF CRYSTAL GROWTH, 2012, 353 (01) :140-144
[29]   Tuning thermal transport in Si nanowires by isotope engineering [J].
Royo, Miquel ;
Rurali, Riccardo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (37) :26262-26267
[30]   Periodically Changing Morphology of the Growth Interface in Si, Ge, and GaP Nanowires [J].
Wen, C. -Y. ;
Tersoff, J. ;
Hillerich, K. ;
Reuter, M. C. ;
Park, J. H. ;
Kodambaka, S. ;
Stach, E. A. ;
Ross, F. M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (02)