Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials

被引:45
作者
Dattoli, G.
Migliorati, M.
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] ENEA, Ctr Ric Frascati, Grp Fis Teor & Matemat Appl, Unita Tecn, I-00044 Frascati, Italy
[3] Univ Roma La Sapienza, Dipartimento Energet, I-00161 Rome, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
Sheffer polynomials; monomiality principle; Appell polynomials; Bernoulli polynomials and numbers; Euler polynomials and numbers; Genocchi polynomials and numbers; Laguerre polynomials; Bessel polynomials; Heisenberg-Weyl algebra; generating functions; integral; transforms; Lagrange expansion;
D O I
10.1016/j.mcm.2006.08.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Sheffer polynomials and the monomiality principle, along with the underlying operational formalism, offer a powerful tool for investigation of the properties of a wide class of polynomials. We present, within such a context, a self-contained theory of such familiar systems of polynomials as the Euler, Bernoulli, Bessel and other clasical polynomials and show how the derivation of some of their old and new properties is greatly simplified. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1033 / 1041
页数:9
相关论文
共 12 条
[1]  
ANDREWS LC, 1992, SPECIAL FUNCTIONS AP
[2]   Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering [J].
Blasiak, P ;
Dattoli, G ;
Horzela, A ;
Penson, KA .
PHYSICS LETTERS A, 2006, 352 (1-2) :7-12
[3]   CLASS OF GENERATING FUNCTIONS [J].
CARLITZ, L .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (03) :518-532
[4]   Generalized polynomials, operational identities and their applications [J].
Dattoli, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :111-123
[5]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, VI
[6]  
Grosswald E., 1978, LECT NOTES MATH, V698
[7]   APPLICATIONS OF A RECURRENCE FOR THE BERNOULLI NUMBERS [J].
HOWARD, FT .
JOURNAL OF NUMBER THEORY, 1995, 52 (01) :157-172
[8]  
Norlund N.E., 1954, Vorlesungen uber Differenzenrechnung
[9]  
Riordan J., 1973, Discrete Mathematics, V5, P381, DOI 10.1016/0012-365X(73)90131-3
[10]  
RMAN S, 1984, SERIES PURE APPL MAT, V111