A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ

被引:99
作者
Chauveau, F. [1 ]
Mougin, J. [2 ]
Bassat, J. M. [1 ]
Mauvy, F. [1 ]
Grenier, J. C. [1 ]
机构
[1] Univ Bordeaux, CNRS, ICMCB, F-33608 Pessac, France
[2] CEA Grenoble, LITEN DTH, F-38054 Grenoble 9, France
关键词
Solid oxide electrolysis cell (SOEC); High temperature steam electrolysis (HTSE); Anode material; Oxygen electrode; Nickelate oxide; Impedance spectroscopy; PLACEMENT;
D O I
10.1016/j.jpowsour.2009.08.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neodymium nickelate, with composition Nd2NiO4+delta is integrated as oxygen electrode in a solid oxide electrolyte supported cell made of a TZ3Y electrolyte and a Ni-CGO hydrogen electrode. This cell is tested in both fuel cell (SOFC) and electrolysis (SOEC) mode and the reversible operation is proven, ASR values being slightly lower in electrolysis mode. Performances in SOEC mode are compared with a commercial cell based on the same electrolyte and cathode, but with lanthanum strontium manganite (LSM) as anode. For a voltage of 1.3 V. current densities of 0.40, 0.64 and 0.87 A cm(-2) are measured at 750,800 and 850 degrees C, respectively; they are much higher than the ones measured in the same conditions for the LSM-containing cell, Indeed, for a voltage of 1.3 V, current densities are respectively 1.7, 3 and 4.2 times higher for the Nd2NiO4+delta cell than for the LSM one at 850, 800 and 750 degrees C, respectively. Consequently, Nd2NiO4+delta can be considered as a good candidate for operating below 800 degrees C as oxygen electrode for high temperature steam electrolysis. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:744 / 749
页数:6
相关论文
共 15 条
[1]   Reference electrode placement in thin solid electrolytes [J].
Adler, SB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (05) :E166-E172
[2]   Reference electrode placement and seals in electrochemical oxygen generators [J].
Adler, SB ;
Henderson, BT ;
Wilson, MA ;
Taylor, DM ;
Richards, RE .
SOLID STATE IONICS, 2000, 134 (1-2) :35-42
[3]   Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides [J].
Boehm, E ;
Bassat, JM ;
Dordor, P ;
Mauvy, F ;
Grenier, JC ;
Stevens, P .
SOLID STATE IONICS, 2005, 176 (37-38) :2717-2725
[4]   High temperature water electrolysis in solid oxide cells [J].
Brisse, Annabelle ;
Schefold, Josef ;
Zahid, Mohsine .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) :5375-5382
[5]   Distortions in electrochemical impedance spectroscopy measurements using 3-electrode methods in SOFC. II. Effect of electrode activity and relaxation times [J].
Cimenti, M. ;
Birss, V. I. ;
Hill, J. M. .
FUEL CELLS, 2007, 7 (05) :377-391
[6]   OXIDES, MIXED OR IN SOLID-SOLUTION, HIGHLY DISPERSED OBTAINED BY THERMAL-DECOMPOSITION OF AMORPHOUS PRECURSORS [J].
COURTY, P ;
AJOT, H ;
MARCILLY, C ;
DELMON, B .
POWDER TECHNOLOGY, 1973, 7 (01) :21-38
[7]   Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant [J].
Elder, Rachael ;
Allen, Ray .
PROGRESS IN NUCLEAR ENERGY, 2009, 51 (03) :500-525
[8]   Performance and durability of solid oxide electrolysis cells [J].
Hauch, A. ;
Jensen, S. H. ;
Ramousse, S. ;
Mogensen, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (09) :A1741-A1747
[9]   Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology [J].
Herring, J. Stephen ;
O'Brien, James E. ;
Stoots, Carl M. ;
Hawkes, G. L. ;
Hartvigsen, Joseph J. ;
Shahnam, Mehrdad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (04) :440-450
[10]  
HUIBERTS R, 2008, P 8 EUR SOL OX FUEL