Fluorination Induced the Surface Segregation of High Voltage Spinel on Lithium-Rich Layered Cathodes for Enhanced Rate Capability in Lithium Ion Batteries

被引:24
作者
Jin, Yi-Chun [1 ]
Duh, Jenq-Gong [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
关键词
fluorination; composite cathode material; high rate capability; high voltage spinel; phase transformation; lithium ion battery; IRREVERSIBLE CAPACITY LOSS; ELECTROCHEMICAL PERFORMANCE; SUBSTITUTION; ELECTRODES; MANGANESE; MN; LI2MNO3; FADE; NI; CO;
D O I
10.1021/acsami.5b10759
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni2+/4+ redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.
引用
收藏
页码:3883 / 3891
页数:9
相关论文
共 39 条
  • [1] Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes
    Gallagher, Kevin G.
    Croy, Jason R.
    Balasubramanian, Mahalingam
    Bettge, Martin
    Abraham, Daniel P.
    Burrell, Anthony K.
    Thackeray, Michael M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2013, 33 : 96 - 98
  • [2] High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries
    Gao, J.
    Kim, J.
    Manthiram, A.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) : 84 - 86
  • [3] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603
  • [4] Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries
    He, Ping
    Yu, Haijun
    Li, De
    Zhou, Haoshen
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (09) : 3680 - 3695
  • [5] Improving rate capability of high potential LiNi0.5Mn1.5O4-x cathode materials via increasing oxygen non-stoichiometries
    Jin, Yi-Chun
    Lin, Chih-Yuan
    Duh, Jenq-Gong
    [J]. ELECTROCHIMICA ACTA, 2012, 69 : 45 - 50
  • [6] Anomalous capacity and cycling stability of xLi2MnO3•(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C
    Johnson, Christopher S.
    Li, Naichao
    Lefief, Christina
    Thackeray, Michael M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) : 787 - 795
  • [7] Comparative Issues of Cathode Materials for Li-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    Zaghib, Karim
    Groult, Henri
    [J]. INORGANICS, 2014, 2 (01) : 132 - 154
  • [8] Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water
    Kim, J
    Hong, YS
    Ryu, KS
    Kim, MG
    Cho, J
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (01) : A19 - A23
  • [9] Effects of the Fluorine-Substitution and Acid Treatment on the Electrochemical Performances of 0.3Li2MnO3•0.7LiMn0.60Ni0.25Co0.15O2 Cathode Material for Li-Ion Battery
    Kim, Seon-Min
    Jin, Bong-Soo
    Lee, Sang-Min
    Kim, Hyun-Soo
    [J]. ELECTROCHIMICA ACTA, 2015, 171 : 35 - 41
  • [10] First-principles study on lithium removal from Li2MnO3
    Koyama, Yukinori
    Tanaka, Isao
    Nagao, Miki
    Kanno, Ryoji
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (01) : 798 - 801