On the asymptotic behavior of the maximum number of spanning trees in circulant graphs

被引:0
作者
Lonc, Z [1 ]
Parol, K [1 ]
Wojciechowski, JM [1 ]
机构
[1] WARSAW UNIV TECHNOL,INST ELECT FUNDAMENTALS,PL-00665 WARSAW,POLAND
关键词
D O I
10.1002/(SICI)1097-0037(199708)30:1<47::AID-NET6>3.3.CO;2-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The following asymptotic estimation of the maximum number of spanning trees f(k)(n) in 2k-regular circulant graphs (k > 1) on n vertices is the main result of this paper: f(k)(n) = ((2k)/(r(k)))(n(1+o(1))), where r(k) = exp [(s=1)Sigma(infinity) [1/(2s(2k)(2s))]((s) (2s))(j1+...+jk=s)Sigma ((j1,...,jk) (s))(2)]. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 9 条
[1]  
BARON G, 1985, FIBONACCI QUART, V23, P258
[2]   SPANNING TREE FORMULAS AND CHEBYSHEV POLYNOMIALS [J].
BOESCH, FT ;
PRODINGER, H .
GRAPHS AND COMBINATORICS, 1986, 2 (03) :191-200
[3]   SUPER LINE-CONNECTIVITY PROPERTIES OF CIRCULANT GRAPHS [J].
BOESCH, FT ;
WANG, JF .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (01) :89-98
[4]  
cek J. Sedla., 1969, Casopis. P.est. Mat., V94, P217
[6]  
Cvetkovic D.M., 1982, SPECTRA GRAPHS
[7]  
MCKAY B, 1983, EUR J COMBIN, V4, P149
[8]  
Sedlacek J., 1966, CAS PESTOVANI MAT, V91, P221
[9]   COUNTING SPANNING-TREES IN DIRECTED REGULAR MULTIGRAPHS [J].
WOJCIECHOWSKI, JM .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1989, 326 (06) :889-896