机构:
Florida Int Univ, Dept Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
Miami Dade Coll, Dept Math, 300 NE Second Ave, Miami, FL 33132 USAFlorida Int Univ, Dept Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
Carballosa, Walter
[1
,4
]
Rodriguez, Jose M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Math, Av Univ 30, Madrid 28911, SpainFlorida Int Univ, Dept Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
Rodriguez, Jose M.
[2
]
Sigarreta, Jose M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Gro, MexicoFlorida Int Univ, Dept Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
Sigarreta, Jose M.
[3
]
Torres-Nunez, Yadira
论文数: 0引用数: 0
h-index: 0
机构:
Miami Dade Coll, Dept Math, 300 NE Second Ave, Miami, FL 33132 USAFlorida Int Univ, Dept Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
Torres-Nunez, Yadira
[4
]
机构:
[1] Florida Int Univ, Dept Math & Stat, 11200 SW 8th St, Miami, FL 33199 USA
[2] Univ Carlos III Madrid, Dept Math, Av Univ 30, Madrid 28911, Spain
[3] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Gro, Mexico
[4] Miami Dade Coll, Dept Math, 300 NE Second Ave, Miami, FL 33132 USA
The alliance polynomial of a graph G with order n and maximum degree Delta is the polynomial A(G; x) = Sigma(Delta)(k)=-(Delta)A(k)(G) x(n+k), where A(k)(G) is the number of exact defensive k-alliances in G. We obtain some properties of A (G; x) and its coefficients for regular graphs. In particular, we characterize the degree of regular graphs by the number of non-zero coefficients of their alliance polynomial. Besides, we prove that the family of alliance polynomials of Delta-regular graphs with small degree is a very special one, since it does not contain alliance polynomials of graphs which are not Delta-regular. By using this last result and direct computation we find that the alliance polynomial determines uniquely each cubic graph of order less than or equal to 10. (C) 2017 Elsevier B.V. All rights reserved.