Band Structure of Wurtzite GaBiAs Nanowires

被引:7
|
作者
Zhang, Bin [1 ,2 ]
Huang, Yuqing [1 ]
Stehr, Jan Eric [1 ]
Chen, Ping-Ping [2 ]
Wang, Xing-Jun [2 ]
Lu, W. [2 ]
Chen, Weimin M. [1 ]
Buyanova, Irina A. [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden
[2] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
基金
中国国家自然科学基金; 瑞典研究理事会; 上海市自然科学基金;
关键词
Wurtzite; nanowire; GaBiAs; photoluminescence; photoluminescence excitation; resonant Raman; band structure; RESONANT RAMAN-SCATTERING; PHOTOLUMINESCENCE; GAAS1-XBIX; GAP;
D O I
10.1021/acs.nanolett.9b02679
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the first successful growth of wurtzite (WZ) GaBiAs nanowires (NVVs) and reveal the effects of Bi incorporation on the electronic band structure by using polarization-resolved optical spectroscopies performed on individual NWs. Experimental evidence of a decrease in the band-gap energy and an upward shift of the topmost three valence subbands upon the incorporation of Bi atoms is provided, whereas the symmetry and ordering of the valence band states remain unchanged, that is, Gamma(9), Gamma(7), and Gamma(7) within the current range of Bi compositions. The extraordinary valence band structure of WZ GaBiAs NWs is explained by anisotropic hybridization and anticrossing between p-like Bi states and the extended valence band states of host WZ GaAs. Moreover, the incorporation of Bi into GaAs is found to significantly reduce the temperature sensitivity of the band-gap energy in WZ GaBiAs NWs. Our work therefore demonstrates that utilizing dilute bismide alloys provides new avenues for band-gap engineering and thus photonic engineering with NWs.
引用
收藏
页码:6454 / 6460
页数:7
相关论文
共 50 条
  • [21] Wurtzite AlGaAs Nanowires
    L. Leandro
    R. Reznik
    J. D. Clement
    J. Repän
    M. Reynolds
    E. V. Ubyivovk
    I. V. Shtrom
    G. Cirlin
    N. Akopian
    Scientific Reports, 10
  • [22] Wurtzite AlGaAs Nanowires
    Leandro, L.
    Reznik, R.
    Clement, J. D.
    Repan, J.
    Reynolds, M.
    Ubyivovk, E., V
    Shtrom, I., V
    Cirlin, G.
    Akopian, N.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [23] Biomimetic synthesis of wurtzite ZnO nanowires possessing a mosaic structure
    Yahiro, Junko
    Oaki, Yuya
    Imai, Hiroaki
    SMALL, 2006, 2 (10) : 1183 - 1187
  • [24] Valence band structure of polytypic zinc-blende/wurtzite GaAs nanowires probed by polarization-dependent photoluminescence
    Spirkoska, D.
    Efros, Al L.
    Lambrecht, W. R. L.
    Cheiwchanchamnangij, T.
    Fontcuberta i Morral, A.
    Abstreiter, G.
    PHYSICAL REVIEW B, 2012, 85 (04):
  • [25] SOME SELECTION RULES FOR BAND-BAND TRANSITIONS IN WURTZITE STRUCTURE
    BIRMAN, JL
    PHYSICAL REVIEW, 1959, 114 (06): : 1490 - 1492
  • [26] Band structure and optical properties of wurtzite semiconductor nanotubes
    Malkova, N.
    Ning, C. Z.
    PHYSICAL REVIEW B, 2007, 75 (15):
  • [28] Band structure and fundamental optical transitions in wurtzite AlN
    Li, J
    Nam, KB
    Nakarmi, ML
    Lin, JY
    Jiang, HX
    Carrier, P
    Wei, SH
    APPLIED PHYSICS LETTERS, 2003, 83 (25) : 5163 - 5165
  • [29] Strain effects on band structure of wurtzite ZnO: a GGA
    Qiao Liping
    Chai Changchun
    Yang Yintang
    Yu Xinhai
    Shi Chunlei
    JOURNAL OF SEMICONDUCTORS, 2014, 35 (07)
  • [30] ENERGY-BAND STRUCTURE OF SOME WURTZITE CRYSTALS
    CHATTERJEE, S
    SINHA, P
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1975, 70 (01): : 283 - 290