Finite groups with hall subnormally embedded Schmidt subgroups

被引:2
|
作者
Monakhov, Victor S. [1 ]
Kniahina, Viktoryia N. [2 ]
机构
[1] Gomel F Scorina State Univ, Dept Algebra & Geometry, Gomel, BELARUS
[2] Gomel F Scorina State Univ, Dept Fundamental & Appl Math, Gomel, BELARUS
关键词
Derived subgroup; finite group; hall subgroup; nilpotent subgroup; subnormal subgroup;
D O I
10.1080/00927872.2019.1632332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [41] (sic)τ-Embedded and (sic)τΦ-Embedded Subgroups of Finite Groups
    Chen, X.
    Guo, W.
    Skiba, A. N.
    ALGEBRA AND LOGIC, 2015, 54 (03) : 226 - 244
  • [42] On σ-Embedded and σ-n-Embedded Subgroups of Finite Groups
    Amjid, V.
    Guo, W.
    Li, B.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (03) : 389 - 397
  • [43] Pronormality of Hall subgroups in finite simple groups
    E. P. Vdovin
    D. O. Revin
    Siberian Mathematical Journal, 2012, 53 (3) : 419 - 430
  • [44] A CONJUGACY CRITERION FOR HALL SUBGROUPS IN FINITE GROUPS
    Vdovin, E. P.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (03) : 402 - 409
  • [45] PRONORMALITY OF HALL SUBGROUPS IN FINITE SIMPLE GROUPS
    Vdovin, E. P.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (03) : 419 - 430
  • [46] ON INTERSECTIONS OF π-HALL SUBGROUPS IN FINITE Dπ-GROUPS
    Zenkov, V., I
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) : 720 - 722
  • [47] Hall subgroups of odd order in finite groups
    Vdovin E.P.
    Revin D.O.
    Algebra and Logic, 2002, 41 (1) : 8 - 29
  • [48] A conjugacy criterion for Hall subgroups in finite groups
    E. P. Vdovin
    D. O. Revin
    Siberian Mathematical Journal, 2010, 51 : 402 - 409
  • [49] Finite groups whose maximal subgroups have the hall property
    Maslova N.V.
    Revin D.O.
    Siberian Advances in Mathematics, 2013, 23 (3) : 196 - 209
  • [50] Finite group with given Hall normally embedded subgroups
    He, Xuanli
    Sun, Qinhui
    Wang, Jing
    RICERCHE DI MATEMATICA, 2024, 74 (1) : 585 - 594