Finite groups with hall subnormally embedded Schmidt subgroups

被引:2
|
作者
Monakhov, Victor S. [1 ]
Kniahina, Viktoryia N. [2 ]
机构
[1] Gomel F Scorina State Univ, Dept Algebra & Geometry, Gomel, BELARUS
[2] Gomel F Scorina State Univ, Dept Fundamental & Appl Math, Gomel, BELARUS
关键词
Derived subgroup; finite group; hall subgroup; nilpotent subgroup; subnormal subgroup;
D O I
10.1080/00927872.2019.1632332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [31] On σ-Permutably Embedded Subgroups of Finite Groups
    Cao, Chenchen
    Zhang, Li
    Guo, Wenbin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) : 11 - 24
  • [32] On Nearly σ-Embedded Subgroups of Finite Groups
    Hussain, Muhammad Tanveer
    Cao, Chenchen
    Zhang, Li
    ALGEBRA COLLOQUIUM, 2019, 26 (04) : 677 - 688
  • [33] Finite groups with systems of Σ-embedded subgroups
    SKIBA Alexander N.
    Science China(Mathematics), 2011, 54 (09) : 1909 - 1926
  • [34] Finite Groups with G-Permutable Schmidt Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-Calabuig, V.
    Tyutyanov, V. N.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [35] Finite Groups with G-Permutable Schmidt Subgroups
    A. Ballester-Bolinches
    S. F. Kamornikov
    V. Pérez-Calabuig
    V. N. Tyutyanov
    Mediterranean Journal of Mathematics, 2023, 20
  • [36] Finite Groups with P-Subnormal Schmidt Subgroups
    Yi, Xiaolan
    Xu, Zhuyan
    Kamornikov, S. F.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S231 - S238
  • [37] FINITE GROUPS WITH s-ABNORMAL SCHMIDT SUBGROUPS
    Li, H.
    Wang, Zh.
    Safonova, I. N.
    Skiba, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (03) : 629 - 638
  • [38] Finite groups with semi-subnormal Schmidt subgroups
    Kniahina, V. N.
    Monakhov, V. S.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 66 - 73
  • [39] Finite Groups with a System of Generalized Subnormal Schmidt Subgroups
    Yi, X.
    Li, M.
    Kamornikov, S. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (01) : 76 - 82
  • [40] On σ-Embedded and σ-n-Embedded Subgroups of Finite Groups
    V. Amjid
    W. Guo
    B. Li
    Siberian Mathematical Journal, 2019, 60 : 389 - 397