Finite groups with hall subnormally embedded Schmidt subgroups

被引:2
|
作者
Monakhov, Victor S. [1 ]
Kniahina, Viktoryia N. [2 ]
机构
[1] Gomel F Scorina State Univ, Dept Algebra & Geometry, Gomel, BELARUS
[2] Gomel F Scorina State Univ, Dept Fundamental & Appl Math, Gomel, BELARUS
关键词
Derived subgroup; finite group; hall subgroup; nilpotent subgroup; subnormal subgroup;
D O I
10.1080/00927872.2019.1632332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [21] Finite groups with Hall π-subgroups
    Vedernikov, V. A.
    SBORNIK MATHEMATICS, 2012, 203 (03) : 326 - 350
  • [22] On Hall normally embedded subgroups and the p-nilpotency of finite groups
    He, Xuanli
    Wang, Jing
    Sun, Qinhui
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1428 - 1437
  • [23] Finite Groups with a System of Generalized Subnormal Schmidt Subgroups
    X. Yi
    M. Li
    S. F. Kamornikov
    Siberian Mathematical Journal, 2023, 64 : 76 - 82
  • [24] Finite groups with Hall supplements to primitive subgroups
    Monakhov, V. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (02) : 288 - 294
  • [25] Finite groups with Hall supplements to primitive subgroups
    V. S. Monakhov
    Siberian Mathematical Journal, 2007, 48 : 288 - 294
  • [26] FINITE GROUPS WITH GENERALIZED SUBNORMAL SCHMIDT SUBGROUPS
    Sun, F.
    Yi, X.
    Kamornikov, S. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 364 - 369
  • [27] On finite groups with generalized σ-subnormal Schmidt subgroups
    Hu, Bin
    Huang, Jianhong
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3127 - 3134
  • [28] Finite groups with HL-embedded subgroups
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2022, 148 : 51 - 63
  • [29] On One Property of Normal Hall Subgroups of Finite Groups
    X. Yi
    B. Cheng
    R. V. Borodich
    S. F. Kamornikov
    Siberian Mathematical Journal, 2025, 66 (2) : 291 - 297
  • [30] Finite groups with systems of Σ-embedded subgroups
    WenBin Guo
    Alexander N. Skiba
    Science China Mathematics, 2011, 54 : 1909 - 1926