A reconfigurable cryogenic platform for the classical control of quantum processors

被引:55
作者
Homulle, Harald [1 ]
Visser, Stefan [1 ]
Patra, Bishnu [1 ]
Ferrari, Giorgio [2 ]
Prati, Enrico [3 ]
Sebastiano, Fabio [1 ]
Charbon, Edoardo [1 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 CD Delft, Netherlands
[2] Politecn Milan, I-20133 Milan, Italy
[3] Ist Foton & Nanotecnol, I-20133 Milan, Italy
关键词
QUBIT;
D O I
10.1063/1.4979611
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices [J].
Al-Taie, H. ;
Smith, L. W. ;
Xu, B. ;
See, P. ;
Griffiths, J. P. ;
Beere, H. E. ;
Jones, G. A. C. ;
Ritchie, D. A. ;
Kelly, M. J. ;
Smith, C. G. .
APPLIED PHYSICS LETTERS, 2013, 102 (24)
[2]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[3]  
Braakman FR, 2013, NAT NANOTECHNOL, V8, P432, DOI [10.1038/nnano.2013.67, 10.1038/NNANO.2013.67]
[4]   Persistent Control of a Superconducting Qubit by Stroboscopic Measurement Feedback [J].
Campagne-Ibarcq, P. ;
Flurin, E. ;
Roch, N. ;
Darson, D. ;
Morfin, P. ;
Mirrahimi, M. ;
Devoret, M. H. ;
Mallet, F. ;
Huard, B. .
PHYSICAL REVIEW X, 2013, 3 (02)
[5]   Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate Sensors [J].
Colless, J. I. ;
Mahoney, A. C. ;
Hornibrook, J. M. ;
Doherty, A. C. ;
Lu, H. ;
Gossard, A. C. ;
Reilly, D. J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[6]   Cryogenic high-frequency readout and control platform for spin qubits [J].
Colless, J. I. ;
Reilly, D. J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)
[7]   Sub-Nanoampere One-Shot Single Electron Transistor Readout Electrometry Below 10 Kelvin [J].
Das, Kushal ;
Lehmann, Torsten ;
Dzurak, Andrew S. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (10) :2816-2824
[8]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[9]  
Ghibaudo G., 1995, INT C MICROELECTRON, V2, P613
[10]  
Homulle H., 2015, FPGA 15, P228