Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework

被引:150
|
作者
Khan, Muhammad Attique [1 ]
Akram, Tallha [2 ]
Zhang, Yu-Dong [3 ]
Sharif, Muhammad [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Islamabad, Pakistan
[2] COMSATS Univ Islamabad, Dept ECE, Wah Campus, Islamabad, Pakistan
[3] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
关键词
Skin cancer; Mask RCNN; Transfer learning; Optimal features; ELM; FEATURES FUSION; CANCER; CLASSIFICATION; DIAGNOSIS; SVM;
D O I
10.1016/j.patrec.2020.12.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Malignant melanoma is considered to be one of the deadliest types of skin cancers which is responsible for the massive number of deaths worldwide. According to the American Cancer Society (ACS), more than a million Americans are living with this melanoma. Since 2019, 192,310 new cases of melanoma are registered, where 95,380 are noninvasive, and 96,480 are invasive. The numbers of deaths due to melanoma in 2019 alone are 7,230, comprising 4,740 men and 2,490 women. Melanoma may be curable if diagnosed at the earlier stages; however, the manual diagnosis is time-consuming and also dependent on the expert dermatologist. In this work, a fully automated computerized aided diagnosis (CAD) system is proposed based on the deep learning framework. In the proposed scheme, the original dermoscopic images are initially pre-processed using the decorrelation formulation technique, which later passes the resultant images to the MASK-RCNN for the lesion segmentation. In this step, the MASK RCNN model is trained using the segmented RGB images generated from the ground truth images of ISBI2016 and ISIC2017 datasets. The resultant segmented images are later passed to the DenseNet deep model for feature extraction. Two different layers, average pool and fully connected, are used for feature extraction, which are later combined, and the resultant vector is forwarded to the feature selection block for down sampling using proposed entropy-controlled least square SVM (LS-SVM). Three datasets are utilized for validation ISBI2016, ISBI2017, and HAM10 0 0 0 to achieve an accuracy of 96.3%, 94.8%, and 88.5% respectively. Further, the performance of MASK-RCNN is also validated on ISBI2016 and ISBI2017 to attain an accuracy of 93.6% and 92.7%. To further increase our confidence in the proposed framework, a fair comparison with other state-of-the-art is also provided. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [41] Novel Framework for Enhanced Learning-based Classification of Lesion in Diabetic Retinopathy
    Prakruthi, M. K.
    Komarasamy, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 37 - 45
  • [42] A novel framework of multiclass skin lesion recognition from dermoscopic images using deep learning and explainable AI
    Ahmad, Naveed
    Shah, Jamal Hussain
    Khan, Muhammad Attique
    Baili, Jamel
    Ansari, Ghulam Jillani
    Tariq, Usman
    Kim, Ye Jin
    Cha, Jae-Hyuk
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [43] DEEP LEARNING-BASED HUMAN POSTURE RECOGNITION
    Ayre-Storie, Adam
    Zhang, Li
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 152 - 157
  • [44] A novel deep learning-based approach for malware detection
    Shaukat, Kamran
    Luo, Suhuai
    Varadharajan, Vijay
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [45] A Deep Learning-Based Framework Oriented to Pathological Gait Recognition with Inertial Sensors
    Palazzo, Lucia
    Suglia, Vladimiro
    Grieco, Sabrina
    Buongiorno, Domenico
    Brunetti, Antonio
    Carnimeo, Leonarda
    Amitrano, Federica
    Coccia, Armando
    Pagano, Gaetano
    D'Addio, Giovanni
    Bevilacqua, Vitoantonio
    SENSORS, 2025, 25 (01)
  • [46] Transfer Learning Strategies for Deep Learning-based PHM Algorithms
    Yang, Fan
    Zhang, Wenjin
    Tao, Laifa
    Ma, Jian
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [47] Deep learning-based framework for expansion, recognition and classification of underwater acoustic signal
    Jin, Guanghao
    Liu, Fan
    Wu, Hao
    Song, Qingzeng
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2020, 32 (02) : 205 - 218
  • [48] Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
    Jang, Jong-Hwan
    Kim, Tae Young
    Yoon, Dukyong
    HEALTHCARE INFORMATICS RESEARCH, 2021, 27 (01) : 19 - 28
  • [49] Deep Learning-Based Recognition of Cervical Squamous Interepithelial Lesions
    An, Huimin
    Ding, Liya
    Ma, Mengyuan
    Huang, Aihua
    Gan, Yi
    Sheng, Danli
    Jiang, Zhinong
    Zhang, Xin
    DIAGNOSTICS, 2023, 13 (10)
  • [50] Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms
    Sahu, Adyasha
    Das, Pradeep Kumar
    Meher, Sukadev
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 114