Nature and Shape of Stacking Faults in 3C-SiC by Molecular Dynamics Simulations

被引:6
作者
Barbisan, Luca [1 ]
Sarikov, Andrey [1 ,2 ]
Marzegalli, Anna [1 ,3 ]
Montalenti, Francesco [1 ]
Miglio, Leo [1 ]
机构
[1] Univ Milano Bicocca, Dept Mat Sci, L NESS, Via R Cozzi 55, I-20125 Milan, Italy
[2] Natl Acad Sci Ukraine, V Lashkarev Inst Semicond Phys, 45 Nauki Ave, UA-03028 Kiev, Ukraine
[3] Politecn Milan, Dept Phys, Via Anzani 42, I-22100 Como, Italy
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2021年 / 258卷 / 06期
关键词
defect characterization; dislocation annihilation; electronic properties; molecular dynamics; Shockley partial dislocation; silicon carbide; stacking faults;
D O I
10.1002/pssb.202000598
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Classical molecular dynamics simulations are used to investigate the 3D evolution of stacking faults (SFs), including the partial dislocation (PD) loops enclosing them, during growth of 3C-SiC layers on Si(001). It is shown that the evolution of single PD loops releasing tensile strain during the initial carbonization stage, commonly preceding 3C-SiC deposition, leads to the formation of experimentally observed V- or Delta-shaped SFs, the key role being played by the differences in the mobilities between Si- and C-terminated PD segments. Nucleation in the adjacent planes of PD loops takes place at later stage of 3C-SiC deposition, when slightly compressive-strain conditions are present. It is shown that such a process very efficiently decreases the elastic energy of the 3C-SiC crystal. The maximum energy decrease is obtained via the formation of triple SFs with common boundaries made up by PD loops yielding a zero total Burgers vector. Obtained results explain the experimentally observed relative abundance of compact microtwin regions in 3C-SiC layers as compared with the other SF-related defects.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Heteroepitaxial growth of (111) 3C-SiC on (110) Si substrate by second order twins [J].
Anzalone, R. ;
Bongiorno, C. ;
Severino, A. ;
D'Arrigo, G. ;
Abbondanza, G. ;
Foti, G. ;
La Via, F. .
APPLIED PHYSICS LETTERS, 2008, 92 (22)
[2]   Structure and motion of basal dislocations in silicon carbide -: art. no. 174108 [J].
Blumenau, AT ;
Fall, CJ ;
Jones, R ;
Öberg, S ;
Frauenheim, T ;
Briddon, PR .
PHYSICAL REVIEW B, 2003, 68 (17)
[3]   3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor [J].
Bosi, M. ;
Ferrari, C. ;
Nilsson, D. ;
Ward, P. J. .
CRYSTENGCOMM, 2016, 18 (39) :7478-7486
[4]   Structural defects and critical electric field in 3C-SiC [J].
Capano, M. A. ;
Smith, A. R. ;
Kim, B. C. ;
Kvam, E. P. ;
Tsoi, S. ;
Ramdas, A. K. ;
Cooper, J. A. .
Silicon Carbide and Related Materials 2005, Pts 1 and 2, 2006, 527-529 :431-434
[5]   Electrical activities of stacking faults and partial dislocations in 4H-SiC homoepitaxial films [J].
Chen, Bin ;
Chen, Jun ;
Sekiguchi, Takashi ;
Ohyanagi, Takasumi ;
Matsuhata, Hirofumi ;
Kinoshita, Akimasa ;
Okumura, Hajime ;
Fabbri, Filippo .
SUPERLATTICES AND MICROSTRUCTURES, 2009, 45 (4-5) :295-300
[6]   3C-SiC heteroepitaxial growth on Inverted Silicon Pyramids (ISP) [J].
D'Arrigo, G. ;
Severino, A. ;
Milazzo, G. ;
Bongiorno, C. ;
Piluso, N. ;
Abbondanza, G. ;
Mauceri, M. ;
Condorelli, G. ;
La Via, F. .
SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2, 2010, 645-648 :135-+
[7]   Strain tailoring in 3C-SiC heteroepitaxial layers grown on Si(100) [J].
Ferro, Gabriel ;
Chassagne, Thierry ;
Leycuras, Andre ;
Cauwet, Francois ;
Monteil, Yves .
CHEMICAL VAPOR DEPOSITION, 2006, 12 (8-9) :483-488
[8]   Nucleation sites of recombination-enhanced stacking fault formation in silicon carbide p-i-n diodes [J].
Ha, S ;
Skowronski, M ;
Lendenmann, H .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :393-398
[9]  
Harris, 1995, PROPERTIES SILICON C
[10]  
Hirth J.P., 1982, Theory of Dislocations