Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing

被引:54
作者
Guo, Xiaojia [1 ]
Xu, Duoduo [2 ]
Zhao, Yanan [4 ,5 ]
Gao, Huimin [2 ]
Shi, Xiaowen [1 ]
Cai, Jie [2 ,3 ]
Deng, Hongbing [1 ]
Chen, Yun [4 ,5 ]
Du, Yumin [1 ]
机构
[1] Wuhan Univ, Hubei Engn Ctr Nat Polymers Based Med Mat, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Univ, Res Inst Shenzhen, Shenzhen 518057, Peoples R China
[4] Wuhan Univ, Sch Basic Med Sci, Dept Biomed Engn, Wuhan 430071, Hubei, Peoples R China
[5] Wuhan Univ, Hubei Prov Key Lab Allergy & Immune Related Dis, Wuhan 430071, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
electroassembly; chitin nanoparticle; hydrogel; aerogel; wound healing; ELECTROPHORETIC DEPOSITION; CELLULOSE NANOCRYSTALS; SUPERCRITICAL CO2; IN-SITU; MEMBRANE; COATINGS; ELECTRODEPOSITION; NANOCELLULOSE; FABRICATION; SCAFFOLDS;
D O I
10.1021/acsami.9b13063
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm +/- 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.
引用
收藏
页码:34766 / 34776
页数:11
相关论文
共 63 条
  • [31] Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering
    Lei, Yong
    Xu, Zhengliang
    Ke, Qinfei
    Yin, Wenjing
    Chen, Yixuan
    Zhang, Changqing
    Guo, Yaping
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 72 : 134 - 142
  • [32] Electrical signals triggered controllable formation of calcium-alginate film for wound treatment
    Liu, Xiaoli
    Liu, Huan
    Qu, Xue
    Lei, Miao
    Zhang, Chuchu
    Hong, Hua
    Payne, Gregory F.
    Liu, Changsheng
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2017, 28 (10)
  • [33] Vancomycin-loaded chitosan aerogel particles for chronic wound applications
    Lopez-Iglesias, Clara
    Barros, Joana
    Ardao, Ines
    Monteiro, Fernando J.
    Alvarez-Lorenzo, Carmen
    Gomez-Amoza, Jose L.
    Garcia-Gonzalez, Carlos A.
    [J]. CARBOHYDRATE POLYMERS, 2019, 204 : 223 - 231
  • [34] Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold
    Lu, Tianhong
    Li, Qing
    Chen, Wenshuai
    Yu, Haipeng
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 94 : 132 - 138
  • [35] Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation
    Ma, Rongxiu
    Wang, Yajing
    Qi, Houjuan
    Shi, Cai
    Wei, Guangbiao
    Xiao, Lidong
    Huang, Zhanhua
    Liu, Shouxin
    Yu, Haipeng
    Teng, Chunbo
    Li, Hu
    Murugadoss, Vignesh
    Zhang, Jiaoxia
    Wang, Yonggui
    Guo, Zhanhu
    [J]. COMPOSITES PART B-ENGINEERING, 2019, 167 : 396 - 405
  • [36] Synthesis and biomedical applications of aerogels: Possibilities and challenges
    Maleki, Hajar
    Duraes, Luisa
    Garcia-Gonzalez, Carlos A.
    del Gaudio, Pasquale
    Portugal, Antonio
    Mahmoudi, Morteza
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2016, 236 : 1 - 27
  • [37] Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing
    Mi, FL
    Shyu, SS
    Wu, YB
    Lee, ST
    Shyong, JY
    Huang, RN
    [J]. BIOMATERIALS, 2001, 22 (02) : 165 - 173
  • [38] Chitosan based-asymmetric membranes for wound healing: A review
    Miguel, Sonia P.
    Moreira, Andre F.
    Correia, Ilidio J.
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 127 : 460 - 475
  • [39] Nel AE, 2009, NAT MATER, V8, P543, DOI [10.1038/NMAT2442, 10.1038/nmat2442]
  • [40] Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan-silica hybrid sponge in a porcine model
    Park, Ji-Ung
    Jeong, Seol-Ha
    Song, Eun-Ho
    Song, Juha
    Kim, Hyoun-Ee
    Kim, Sukwha
    [J]. JOURNAL OF BIOMATERIALS APPLICATIONS, 2018, 32 (08) : 1011 - 1023