Electroassembly of Chitin Nanoparticles to Construct Freestanding Hydrogels and High Porous Aerogels for Wound Healing

被引:54
作者
Guo, Xiaojia [1 ]
Xu, Duoduo [2 ]
Zhao, Yanan [4 ,5 ]
Gao, Huimin [2 ]
Shi, Xiaowen [1 ]
Cai, Jie [2 ,3 ]
Deng, Hongbing [1 ]
Chen, Yun [4 ,5 ]
Du, Yumin [1 ]
机构
[1] Wuhan Univ, Hubei Engn Ctr Nat Polymers Based Med Mat, Sch Resource & Environm Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Univ, Res Inst Shenzhen, Shenzhen 518057, Peoples R China
[4] Wuhan Univ, Sch Basic Med Sci, Dept Biomed Engn, Wuhan 430071, Hubei, Peoples R China
[5] Wuhan Univ, Hubei Prov Key Lab Allergy & Immune Related Dis, Wuhan 430071, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
electroassembly; chitin nanoparticle; hydrogel; aerogel; wound healing; ELECTROPHORETIC DEPOSITION; CELLULOSE NANOCRYSTALS; SUPERCRITICAL CO2; IN-SITU; MEMBRANE; COATINGS; ELECTRODEPOSITION; NANOCELLULOSE; FABRICATION; SCAFFOLDS;
D O I
10.1021/acsami.9b13063
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The construction of polymeric nanocomponents into a hierarchical structure poses great importance for subsequent biomedical applications. Herein, we report for the first time the electroassembly of chitin nanoparticles (14 nm +/- 3 nm from transmission electron microscopy) to construct thick and freestanding hydrogels, which can be further dried to obtain high porous and tough aerogels for wound healing. The electroassembly is a simple, straightforward, and controllable process, which crucially depends on the pH of the chitin nanoparticle suspension and the degree of deacetylation of chitin. Interestingly, the electroassembly of chitin nanoparticles is completely reversible, suggesting the physical assembly feature of the freestanding hydrogel. By using supercritical CO2 drying and freeze-drying, chitin aerogels and cryogels can be facilely obtained. Because of the intriguing features (i.e., large surface area, interconnected porous structure, and enhanced hydrophilicity), chitin aerogels demonstrate adorable performance to accelerate the healing of wounds.
引用
收藏
页码:34766 / 34776
页数:11
相关论文
共 63 条
  • [1] Layer-by-layer self-assembled shells for drug delivery
    Ariga, Katsuhiko
    Lvov, Yuri M.
    Kawakami, Kohsaku
    Ji, Qingmin
    Hill, Jonathan P.
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (09) : 762 - 771
  • [2] Bachelard N, 2017, NAT MATER, V16, P808, DOI [10.1038/nmat4920, 10.1038/NMAT4920]
  • [3] Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy
    Bartmanski, Michal
    Zielinski, Andrzej
    Majkowska-Marzec, Beata
    Strugala, Gabriel
    [J]. CERAMICS INTERNATIONAL, 2018, 44 (16) : 19236 - 19246
  • [4] A review on fundamentals and applications of electrophoretic deposition (EPD)
    Besra, Laxmidhar
    Liu, Meilin
    [J]. PROGRESS IN MATERIALS SCIENCE, 2007, 52 (01) : 1 - 61
  • [5] Cellulose aero-, cryo- and xerogels: towards understanding of morphology control
    Buchtova, Nela
    Budtova, Tatiana
    [J]. CELLULOSE, 2016, 23 (04) : 2585 - 2595
  • [6] Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel
    Cai, Jie
    Liu, Shilin
    Feng, Jiao
    Kimura, Satoshi
    Wada, Masahisa
    Kuga, Shigenori
    Zhang, Lina
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) : 2076 - 2079
  • [7] Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems
    Caldorera-Moore, Mary
    Peppas, Nicholas A.
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (15) : 1391 - 1401
  • [8] Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods
    Chavez-Valdez, Alejandra
    Boccaccini, Aldo R.
    [J]. ELECTROCHIMICA ACTA, 2012, 65 : 70 - 89
  • [9] Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes
    Chen, Qiang
    Perez de Larraya, Uxua
    Garmendia, Nere
    Lasheras-Zubiate, Maria
    Cordero-Arias, Luis
    Virtanen, Sannakaisa
    Soccaccini, Aldo R.
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 118 : 41 - 48
  • [10] Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering
    Chen, Weiming
    Chen, Shuai
    Morsi, Yosry
    El-Hamshary, Hany
    El-Newehy, Mohamed
    Fan, Cunyi
    Mo, Xiumei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (37) : 24415 - 24425