The primary atomization was studied in a 300 pm thickness water sheet, generated by a planar airblast atomizer. The research novelty consisted in increasing the airflow absolute pressure from atmospheric conditions to 6 bar. The experimental techniques employed included Oscillometry by Laser Intensity Reflexion (ORIL), Laser Doppler Velocimetry (LDV) and flow visualization by fast video camera. The atomization mechanisms, described in the literature at atmospheric environments, were observed at high pressure conditions, for a constant momentum flux ratio. Furthermore, a new atomization mechanism was observed at high values of this ratio. Finally, dimensionless relations have been proposed for the global oscillation frequency, minimum air oscillation velocity, break-up distance and transversal wavelength. To cite this article: VG. Fernandez et al., C. R. Mecanique 337 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.