Nonlinear reduced-order modelling for limit-cycle oscillation analysis

被引:10
作者
Gai, Guanqun [1 ]
Timme, Sebastian [1 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 3GH, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Hopf bifurcation; Nonlinear model reduction; Eigenmode decomposition; Polynomial stiffness; Limit-cycle oscillation; AEROELASTIC SYSTEMS; CONTROL SURFACE; AIRFOIL; PREDICTION; STABILITY; COMPUTATION; UNCERTAINTY; BIFURCATION; FREEPLAY;
D O I
10.1007/s11071-015-2544-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A nonlinear model reduction based on eigenmode decomposition and projection for the prediction of sub- and supercritical limit-cycle oscillation is presented herein. The paper focuses on the derivation of the reduced-order model formulation to include expansion terms up to fifth order such that higher-order nonlinear behaviour of a physical system can be captured. The method is applied to a two degree-of-freedom pitch-plunge aerofoil structural model in unsteady incompressible flow. Structural stiffness nonlinearity is introduced as a fifth-order polynomial, while the aerodynamics follow linear theory. It is demonstrated that the reduced-order model is capable of accurately capturing sub- and supercritical limit-cycle oscillations arising both from initial disturbances and gust excitation. Furthermore, an analysis of the computational cost associated with constructing such reduced-order model and its applicability to more complex aeroelastic problems is given.
引用
收藏
页码:991 / 1009
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[2]  
[Anonymous], TN3539 NACA
[3]   Wing-rock limit cycle oscillation prediction based on computational fluid dynamics [J].
Badcock, K. J. ;
Woodgate, M. A. ;
Allan, M. R. ;
Beran, P. S. .
JOURNAL OF AIRCRAFT, 2008, 45 (03) :954-961
[4]   Transonic aeroelastic simulation for instability searches and uncertainty analysis [J].
Badcock, K. J. ;
Timme, S. ;
Marques, S. ;
Khodaparast, H. ;
Prandina, M. ;
Mottershead, J. E. ;
Swift, A. ;
Da Ronch, A. ;
Woodgate, M. A. .
PROGRESS IN AEROSPACE SCIENCES, 2011, 47 (05) :392-423
[5]   Bifurcation Prediction of Large-Order Aeroelastic Models [J].
Badcock, K. J. ;
Woodgate, M. A. .
AIAA JOURNAL, 2010, 48 (06) :1037-1046
[6]   A reduced order cyclic method for computation of limit cycles [J].
Beran, PS ;
Lucia, DJ .
NONLINEAR DYNAMICS, 2005, 39 (1-2) :143-158
[7]  
Carlson H. A., 2013, 20131111 AIAA
[8]   Nonlinear behavior of a typical airfoil section with control surface freeplay: A numerical and experimental study [J].
Conner, MD ;
Tang, DM ;
Dowell, EH ;
Virgin, LN .
JOURNAL OF FLUIDS AND STRUCTURES, 1997, 11 (01) :89-109
[9]  
Da Ronch A., 2012, 20124044 AIAA
[10]   A nonlinear analysis of stability and gust response of aeroelastic systems [J].
Dessi, D. ;
Mastroddi, F. .
JOURNAL OF FLUIDS AND STRUCTURES, 2008, 24 (03) :436-445