Periodic orbits and Arnold diffusion

被引:0
|
作者
Cresson, J
Guillet, C
机构
[1] Inst Math Jussieu, F-75013 Paris, France
[2] Univ Bourgogne, Equipe Topol, Dijon, France
关键词
Hamiltonian systems; hyperbolic tori; symbolic dynamics; Arnold diffusion;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider three degrees of freedom initially hyperbolic Hamiltonian systems H-mu, where 0 < μ << 1 is the perturbing parameter. We prove that, under some technical assumptions, the Arnold diffusion time can be of order (1/μ) log(1/μ), as conjectured by P. Lochak. Our method is based on the construction of a dual chain of hyperbolic periodic orbits surrounding a given transition chain of partially hyperbolic tori, whose parameters (angles, periods) can be related to parameters (diophantine condition, angles) of the original chain of tori, Using Easton's method of windows, we give a general formula for the time of drift along such a chain of hyperbolic periodic orbits. We then deduce the result for chain of partially hyperbolic tori.
引用
收藏
页码:451 / 470
页数:20
相关论文
共 50 条
  • [31] New families of periodic orbits for a galactic potential
    de Debustos, Maria T.
    Guirao, Juanl. L. G.
    Llibre, Jaume
    Vera, Juan A.
    CHAOS SOLITONS & FRACTALS, 2016, 82 : 97 - 102
  • [32] Periodic Orbits and Dynamical Complexity in Cellular Automata
    Dennunzio, Alberto
    Formenti, Enrico
    Di Lena, Pietro
    Margara, Luciano
    FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 183 - 199
  • [33] Periodic orbits in analytically perturbed Poisson systems
    Garcia, Isaac A.
    Hernandez-Bermejo, Benito
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 276 : 1 - 6
  • [34] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [35] The Hörmander index of symmetric periodic orbits
    Urs Frauenfelder
    Otto van Koert
    Geometriae Dedicata, 2014, 168 : 197 - 205
  • [36] A NOTE ON INTEGRAL PROPERTIES OF PERIODIC-ORBITS
    DOLD, JW
    SIAM REVIEW, 1993, 35 (01) : 125 - 129
  • [37] Unstable periodic orbits and noise in chaos computing
    Kia, Behnam
    Dari, Anna
    Ditto, William L.
    Spano, Mark L.
    CHAOS, 2011, 21 (04)
  • [38] Arnold diffusion of the discrete nonlinear Schrodinger equation
    Li, Y. Charles
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2006, 3 (03) : 235 - 258
  • [39] Arnold diffusion for nearly integrable Hamiltonian systems
    Chong-Qing Cheng
    Jinxin Xue
    Science China Mathematics, 2023, 66 : 1649 - 1712
  • [40] Topological classification of periodic orbits in Lorenz system
    Dong, Chengwei
    CHINESE PHYSICS B, 2018, 27 (08)