Mean-Field and Classical Limit for the N-Body Quantum Dynamics with Coulomb Interaction

被引:8
作者
Golse, Francois [1 ]
Paul, Thierry [2 ,3 ]
机构
[1] Ecole Polytech, CMLS, Route Saclay, F-91128 Palaiseau, France
[2] Sorbonne Univ, CNRS, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[3] Sorbonne Univ, Lab JL Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
SCHRODINGER-EQUATION; EMPIRICAL MEASURES; VLASOV EQUATIONS; APPROXIMATION; DERIVATION; SYSTEMS;
D O I
10.1002/cpa.21986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the validity of the joint mean-field and classical limit of the bosonic quantum N-body dynamics leading to the pressureless Euler-Poisson system for factorized initial data whose first marginal has a monokinetic Wigner measure. The interaction potential is assumed to be the repulsive Coulomb potential. The validity of this derivation is limited to finite time intervals on which the Euler-Poisson system has a smooth solution that is rapidly decaying at infinity. One key ingredient in the proof is an inequality taken from S. Serfaty (Duke Math. J. 169 (2020), 2887-2935) ).(c) 2021 Wiley Periodicals LLC.
引用
收藏
页码:1332 / 1376
页数:45
相关论文
共 42 条
[1]  
[Anonymous], 1993, Revista Matematica Iberoamericana
[2]   Derivation of the Schrodinger-Poisson equation from the quantum N-body problem [J].
Bardos, C ;
Erdös, L ;
Golse, F ;
Mauser, N ;
Yau, HT .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :515-520
[3]  
Bardos C., 2000, METHODS APPL ANAL, V7, P275, DOI DOI 10.4310/MAA.2000.V7.N2.A2
[4]   HARTREE-FOCK TIME-DEPENDENT PROBLEM [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) :25-33
[5]   VLASOV DYNAMICS AND ITS FLUCTUATIONS IN 1-N LIMIT OF INTERACTING CLASSICAL PARTICLES [J].
BRAUN, W ;
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 56 (02) :101-113
[6]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[7]  
Brezis H, 2011, UNIVERSITEXT, P1
[8]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130
[9]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[10]  
Dobrushin Roland., 1979, Functional Analysis and Its Applications, V13, P115, DOI 10.1007/BF01077243