Fermion-boson interactions and quantum algebras

被引:41
作者
Ballesteros, A
Civitarese, O
Herranz, FJ
Reboiro, M
机构
[1] Univ Burgos, Dept Fis, E-09001 Burgos, Spain
[2] Natl Univ La Plata, Dept Fis, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW C | 2002年 / 66卷 / 06期
关键词
D O I
10.1103/PhysRevC.66.064317
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Quantum algebras (q algebras) are used to describe interactions between fermions and bosons. Particularly, the concept of a su(q)(2) dynamical symmetry is invoked in order to reproduce the ground state properties of systems of fermions and bosons interacting via schematic forces. The structure of the proposed su(q)(2) Hamiltonians, and the meaning of the corresponding deformation parameters, are discussed.
引用
收藏
页数:10
相关论文
共 55 条
[1]   BECCHI-ROUET-STORA-TYUTIN TREATMENT OF A SIMPLIFIED BARYON MODEL [J].
ARMONY, JL ;
BES, DR .
PHYSICAL REVIEW C, 1993, 47 (04) :1781-1790
[2]   Bases for representations of quantum algebras [J].
Atakishiyev, NM ;
Winternitz, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (30) :5303-5313
[3]   On the spectrum of a Hamilton defined on suq(2) and quantum optical models [J].
Ballesteros, A ;
Chumakov, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35) :6261-6269
[4]  
BOHR A, 1975, NUCLEAR STRUCTURE, V2, pCH6
[5]   Quantum groups and their applications in nuclear physics [J].
Bonatsos, D ;
Daskaloyannis, C .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 43, 1999, 43 :537-618
[6]   EXACTLY SOLUBLE MODEL OF ATOM-PHONON COUPLING SHOWING PERIODIC DECAY AND REVIVAL [J].
BUCK, B ;
SUKUMAR, CV .
PHYSICS LETTERS A, 1981, 81 (2-3) :132-135
[7]   SOLUTION OF THE HEISENBERG EQUATIONS FOR AN ATOM INTERACTING WITH RADIATION [J].
BUCK, B ;
SUKUMAR, CV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (04) :877-883
[8]   QUANTUM ALGEBRA AS THE DYNAMIC SYMMETRY OF THE DEFORMED JAYNES-CUMMINGS MODEL [J].
CHAICHIAN, M ;
ELLINAS, D ;
KULISH, P .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :980-983
[9]  
CHAICHIAN M, 1996, INTRO QUANTUM GROUPS
[10]  
Chari V., 1994, QUANTUM GROUPS