Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction

被引:55
作者
Iffelsberger, Christian [1 ]
Ng, Siowwoon [1 ]
Pumera, Martin [1 ,2 ,3 ,4 ]
机构
[1] Brno Univ Technol, Cent European Inst Technol, Future Energy & Innovat Lab, Purkynova 123, Brno 61200, Czech Republic
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung 40402, Taiwan
[3] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[4] Univ Chem & Technol Prague, Fac Chem Technol, Dept Inorgan Chem, Ctr Adv Funct Nanorobots, Tech 5, Prague, Czech Republic
关键词
3D printing; Nanostructure electrode; TMD electrodeposition; MoS3; Scanning electrochemical microscopy; Hydrogen evolution reaction; AMORPHOUS MOLYBDENUM SULFIDE; MICROSCOPY; ELECTRODES; TRANSPORT; CELL;
D O I
10.1016/j.apmt.2020.100654
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fused filament modeling (FFM) is the most common and simplest type of 3D printing. Conductive composite filaments have become widely used for 3D printing of electrodes and electrochemical devices for sensing, energy storage and energy conversion applications. To enhance the electrochemical performance of the 3D printed parts, post printing procedures are applied. These for example consist of atomic layer deposition, which is high-end equipment demanding. We offer simple, scalable and room temperature method of coating the 3D-printed electrode surfaces via desired catalyst via electrodeposition. We show the electrodeposition of MoSx which is highly catalytic to hydrogen evolution reaction as a case study of such thin film electrodeposition. The applicability of the self-standing 3D printed nanostructure for energy conversion purposes is demonstrated. Valuable information about the heterogeneity of the activity of the catalyst is provided by the scanning electrochemical microscopy (SECM). Electrodeposition is a universal technique which allows turning the surface of 3D objects into catalysts. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] 3D-printing technologies for electrochemical applications
    Ambrosi, Adriano
    Pumera, Martin
    [J]. CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) : 2740 - 2755
  • [2] Scanning electrochemical microscopy (SECM): An investigation of the effects of tip geometry on amperometric tip response
    Amphlett, JL
    Denuault, G
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) : 9946 - 9951
  • [3] 3D-Printed Microfluidics
    Au, Anthony K.
    Huynh, Wilson
    Horowitz, Lisa F.
    Folch, Albert
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) : 3862 - 3881
  • [4] Bard A. J., 2012, SCANNING ELECTROCHEM
  • [5] High-Resolution Imaging of Nanostructured Si/SiO2 Substrates and Cell Monolayers Using Scanning Electrochemical Microscopy
    Bergner, Stefan
    Palatzky, Peter
    Wegener, Joachim
    Matysik, Frank-Michael
    [J]. ELECTROANALYSIS, 2011, 23 (01) : 196 - 200
  • [6] Simultaneous Imaging and Chemical Attack of a Single Living Cell within a Confluent Cell Mono layer by Means of Scanning Electrochemical Microscopy
    Bergner, Stefan
    Wegener, Joachim
    Matysik, Frank-Michael
    [J]. ANALYTICAL CHEMISTRY, 2011, 83 (01) : 169 - 174
  • [7] Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
    Browne, Michelle P.
    Plutnar, Jan
    Pourrahimi, Amir Masoud
    Sofer, Zdenek
    Pumera, Martin
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (26)
  • [8] 3D Printed Graphene Electrodes' Electrochemical Activation
    Browne, Michelle P.
    Novotny, Filip
    Sofer, Zdenek
    Pumera, Martin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) : 40294 - 40301
  • [9] 3D printing for chemical, pharmaceutical and biological applications
    Capel, Andrew J.
    Rimington, Rowan P.
    Lewis, Mark P.
    Christie, Steven D. R.
    [J]. NATURE REVIEWS CHEMISTRY, 2018, 2 (12): : 422 - 436
  • [10] Layered transition metal dichalcogenide electrochemistry: journey across the periodic table
    Chia, Xinyi
    Pumera, Martin
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (15) : 5602 - 5613