Non-commutative functional calculus: Unbounded operators

被引:11
|
作者
Colombo, Fabrizio [1 ]
Gentili, Graziano [2 ]
Sabadini, Irene [1 ]
Struppa, Daniele C. [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Florence, Dipartimento Matemat, Florence, Italy
[3] Chapman Univ, Dept Math & Comp Sci, Orange, CA 92866 USA
关键词
Functional calculus; Spectral theory; Bounded and unbounded operators; REGULAR FUNCTIONS;
D O I
10.1016/j.geomphys.2009.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent work, Colombo (in press) [1], we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. in this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 50 条