Non-commutative functional calculus: Unbounded operators

被引:11
|
作者
Colombo, Fabrizio [1 ]
Gentili, Graziano [2 ]
Sabadini, Irene [1 ]
Struppa, Daniele C. [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Florence, Dipartimento Matemat, Florence, Italy
[3] Chapman Univ, Dept Math & Comp Sci, Orange, CA 92866 USA
关键词
Functional calculus; Spectral theory; Bounded and unbounded operators; REGULAR FUNCTIONS;
D O I
10.1016/j.geomphys.2009.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent work, Colombo (in press) [1], we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. in this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 50 条
  • [21] Phillips symmetric operators and functional calculus of maximal symmetric operators
    Sergiusz Kużel
    Anna Różańska
    Annals of Functional Analysis, 2023, 14
  • [22] A symmetric functional calculus for systems of operators of type ω
    Jefferies, B
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 59 - 74
  • [23] H∞ functional calculus for sectorial and bisectorial operators
    Dore, G
    Venni, A
    STUDIA MATHEMATICA, 2005, 166 (03) : 221 - 241
  • [24] Stability of AN-Operators under Functional Calculus
    Ramesh, G.
    Osaka, H.
    Udagawa, Y.
    Yamazaki, T.
    ANALYSIS MATHEMATICA, 2023, 49 (03) : 825 - 839
  • [25] Borel functional calculus for quaternionic normal operators
    Ramesh, G.
    Kumar, Santhosh P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (05)
  • [26] The functional calculus of full operators with discrete spectrum
    Lopushans'kyi O.V.
    Dmytryshyn M.I.
    Journal of Mathematical Sciences, 1999, 97 (1) : 3872 - 3878
  • [27] Calderon-Zygmund theory for non-integral operators and the H∞ functional calculus
    Blunck, S
    Kunstmann, PC
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (03) : 919 - 942
  • [28] H∞-FUNCTIONAL CALCULUS FOR COMMUTING FAMILIES OF RITT OPERATORS AND SECTORIAL OPERATORS
    Arrigoni, Olivier
    Le Merdy, Christian
    OPERATORS AND MATRICES, 2019, 13 (04): : 1055 - 1090
  • [29] Functional calculus for non-commuting operators with real spectra via an iterated Cauchy formula
    Andersson, M
    Sjöstrand, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 210 (02) : 341 - 375
  • [30] Analytic Besov functional calculus for several commuting operators
    Batty, Charles
    Gomilko, Alexander
    Kobos, Dominik
    Tomilov, Yuri
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (02) : 513 - 556