Free energy landscape of a biomolecule in dihedral principal component space: Sampling convergence and correspondence between structures and minima

被引:127
作者
Maisuradze, Gia G.
Leitner, David M. [1 ]
机构
[1] Univ Nevada, Dept Chem, Reno, NV 89557 USA
[2] Univ Nevada, Chem Phys Program, Reno, NV 89557 USA
关键词
molecular dynamics (MD) simulations; potbential of mean force; peptide dynaimics; protein dynamics; isomerization; folding;
D O I
10.1002/prot.21344
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-521. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure.
引用
收藏
页码:569 / 578
页数:10
相关论文
共 55 条
[1]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[2]   REFINED 1.8 ANGSTROM CRYSTAL-STRUCTURE OF THE LAMBDA-REPRESSOR OPERATOR COMPLEX [J].
BEAMER, LJ ;
PABO, CO .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (01) :177-196
[3]   Quantitative visualization of a macromolecular potential energy ''funnel'' [J].
Becker, OM .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1997, 398 :507-516
[4]  
Becker OM, 1997, PROTEINS, V27, P213, DOI 10.1002/(SICI)1097-0134(199702)27:2<213::AID-PROT8>3.0.CO
[5]  
2-G
[6]   The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics [J].
Becker, OM ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1495-1517
[7]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658-1_21]
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   FIRST-PRINCIPLES CALCULATION OF THE FOLDING FREE-ENERGY OF A 3-HELIX BUNDLE PROTEIN [J].
BOCZKO, EM ;
BROOKS, CL .
SCIENCE, 1995, 269 (5222) :393-396
[10]   Protein and peptide folding explored with molecular simulations [J].
Brooks, CL .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (06) :447-454