Universal deformation rings need not be complete intersections

被引:16
作者
Bleher, Frauke M.
Chinburg, Ted [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
D O I
10.1007/s00208-006-0054-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question of M. Flach by showing that there is a linear representation of a profinite group whose (unrestricted) universal deformation ring is not a complete intersection. We show that such examples arise in arithmetic in the following way. There are infinitely many real quadratic fields F for which there is a mod 2 representation of the Galois group of the maximal unramified extension of F whose universal deformation ring is not a complete intersection. Finally, we discuss bounds on the singularities of universal deformation rings of representations of finite groups in terms of the nilpotency of the associated defect groups.
引用
收藏
页码:739 / 767
页数:29
相关论文
共 23 条
[1]   Universal deformation rings need not be complete intersections [J].
Bleher, FM ;
Chinburg, T .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :229-232
[2]  
Bleher FM, 2003, COMMENT MATH HELV, V78, P45
[3]   Universal deformation rings and Klein four defect groups [J].
Bleher, FM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) :3893-3906
[4]   Universal deformation rings and cyclic blocks [J].
Bleher, FM ;
Chinburg, T .
MATHEMATISCHE ANNALEN, 2000, 318 (04) :805-836
[5]  
BLEHER FM, ARXIVMATHRT0607571
[6]   Mod l representations of arithmetic fundamental groups II:: A conjecture of A. J.!de Jong [J].
Böckle, G ;
Khare, C .
COMPOSITIO MATHEMATICA, 2006, 142 (02) :271-294
[7]   On the density of modular points in universal deformation spaces [J].
Böckle, G .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (05) :985-1007
[8]  
BOSTON N, IN PRESS CONT MATH
[9]   On the ramification of Hecke algebras at Eisenstein primes [J].
Calegari, F ;
Emerton, M .
INVENTIONES MATHEMATICAE, 2005, 160 (01) :97-144
[10]  
Chinburg T, 2005, REND SEMIN MAT U PAD, V113, P135