Ground state solutions for a generalized quasilinear Choquard equation

被引:5
|
作者
Zhang, Jing [1 ]
Ji, Chao [2 ]
机构
[1] Inner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
ground state solutions; quasilinear choquard equation; variational methods;
D O I
10.1002/mma.7169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following quasilinear Choquard equation: -Delta u + V(x)u - u Delta(u(2)) = (I-alpha* G(u))g(u),x is an element of R-N, where N >= 3, 0 < alpha < N, V: R-N -> R is radial potential, G(t) = integral(t)(0)g(s)ds, and I-alpha is a Riesz potential. Using the variational method we establish the existence of ground state solutions under appropriate assumptions, that is, nontrivial solution with least possible energy.
引用
收藏
页码:6048 / 6055
页数:8
相关论文
共 50 条