Shifted Chebyshev schemes for solving fractional optimal control problems

被引:33
作者
Abdelhakem, M. [1 ,2 ]
Moussa, H. [2 ]
Baleanu, D. [3 ,4 ]
El-Kady, M. [1 ,2 ]
机构
[1] Helwan Univ, Math Dept, Fac Sci, Cairo, Egypt
[2] Canadian Int Coll, New Cairo, Egypt
[3] Cankaya Univ, Dept Math, Etimesgut, Turkey
[4] Inst Space Sci, Magurele, Romania
关键词
Fractional optimal control problems; shifted Chebyshev polynomials; fractional derivative; differentiation and integration matrices Mathematics Subject Classification; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; CALCULUS; ORDER;
D O I
10.1177/1077546319852218
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Two schemes to find approximated solutions of optimal control problems of fractional order (FOCPs) are investigated. Integration and differentiation matrices were used in these schemes. These schemes used Chebyshev polynomials in the shifted case as a functional approximation. The target of the presented schemes is to convert such problems to optimization problems (OPs). Numerical examples are included, showing the strength of the schemes.
引用
收藏
页码:2143 / 2150
页数:8
相关论文
共 39 条
[1]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[2]  
Ahmed E.M., 2017, J. Fract. Calc. Appl., V8, P118
[3]   Numerical Schemes for Fractional Optimal Control Problems [J].
Alizadeh, Ali ;
Effati, Sohrab ;
Heydari, Aghileh .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (08)
[4]   Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1490-1500
[5]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[6]  
[Anonymous], 2011, Spectral Methods, DOI [DOI 10.1007/978, DOI 10.1007/978-3-540-71041-7, 10.1007/978-3-540-71041-7]
[7]  
[Anonymous], 2013, GEN MATH NOTES
[8]  
[Anonymous], INT J MATH SCI
[9]  
[Anonymous], 2012, Fractional calculus: models and numerical methods
[10]  
Arafa AAM, 2016, J FRACT CALC APPL, V7, P36